Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genome Res ; 31(10): 1900-1912, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33627474

RESUMEN

Because disease-associated microglia (DAM) and disease-associated astrocytes (DAA) are involved in the pathophysiology of Alzheimer's disease (AD), we systematically identified molecular networks between DAM and DAA to uncover novel therapeutic targets for AD. Specifically, we develop a network-based methodology that leverages single-cell/nucleus RNA sequencing data from both transgenic mouse models and AD patient brains, as well as drug-target network, metabolite-enzyme associations, the human protein-protein interactome, and large-scale longitudinal patient data. Through this approach, we find both common and unique gene network regulators between DAM (i.e., PAK1, MAPK14, and CSF1R) and DAA (i.e., NFKB1, FOS, and JUN) that are significantly enriched by neuro-inflammatory pathways and well-known genetic variants (i.e., BIN1). We identify shared immune pathways between DAM and DAA, including Th17 cell differentiation and chemokine signaling. Last, integrative metabolite-enzyme network analyses suggest that fatty acids and amino acids may trigger molecular alterations in DAM and DAA. Combining network-based prediction and retrospective case-control observations with 7.2 million individuals, we identify that usage of fluticasone (an approved glucocorticoid receptor agonist) is significantly associated with a reduced incidence of AD (hazard ratio [HR] = 0.86, 95% confidence interval [CI] 0.83-0.89, P < 1.0 × 10-8). Propensity score-stratified cohort studies reveal that usage of mometasone (a stronger glucocorticoid receptor agonist) is significantly associated with a decreased risk of AD (HR = 0.74, 95% CI 0.68-0.81, P < 1.0 × 10-8) compared to fluticasone after adjusting age, gender, and disease comorbidities. In summary, we present a network-based, multimodal methodology for single-cell/nucleus genomics-informed drug discovery and have identified fluticasone and mometasone as potential treatments in AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Animales , Astrocitos/metabolismo , Análisis de Datos , Reposicionamiento de Medicamentos , Humanos , Ratones , Microglía/metabolismo , Estudios Retrospectivos , Análisis de Secuencia de ARN
2.
J Immunol ; 208(10): 2283-2299, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35523454

RESUMEN

Alzheimer's disease (AD) has been linked to multiple immune system-related genetic variants. Triggering receptor expressed on myeloid cells 2 (TREM2) genetic variants are risk factors for AD and other neurodegenerative diseases. In addition, soluble TREM2 (sTREM2) isoform is elevated in cerebrospinal fluid in the early stages of AD and is associated with slower cognitive decline in a disease stage-dependent manner. Multiple studies have reported an altered peripheral immune response in AD. However, less is known about the relationship between peripheral sTREM2 and an altered peripheral immune response in AD. The objective of this study was to explore the relationship between human plasma sTREM2 and inflammatory activity in AD. The hypothesis of this exploratory study was that sTREM2-related inflammatory activity differs by AD stage. We observed different patterns of inflammatory activity across AD stages that implicate early-stage alterations in peripheral sTREM2-related inflammatory activity in AD. Notably, fractalkine showed a significant relationship with sTREM2 across different analyses in the control groups that was lost in later AD-related stages with high levels in mild cognitive impairment. Although multiple other inflammatory factors either differed significantly between groups or were significantly correlated with sTREM2 within specific groups, three inflammatory factors (fibroblast growth factor-2, GM-CSF, and IL-1ß) are notable because they exhibited both lower levels in AD, compared with mild cognitive impairment, and a change in the relationship with sTREM2. This evidence provides important support to the hypothesis that sTREM2-related inflammatory activity alterations are AD stage specific and provides critical information for therapeutic strategies focused on the immune response.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/genética , Biomarcadores , Humanos
3.
Alzheimers Dement ; 20(1): 549-562, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37740924

RESUMEN

INTRODUCTION: The National Institute on Aging - Alzheimer's Association (NIA-AA) ATN research framework proposes to use biomarkers for amyloid (A), tau (T), and neurodegeneration (N) to stage individuals with AD pathological features and track changes longitudinally. The overall aim was to utilize this framework to characterize pre-mortem ATN status longitudinally in a clinically diagnosed cohort of dementia with Lewy bodies (DLB) and to correlate it with the post mortem diagnosis. METHODS: The cohort was subtyped by cerebrospinal fluid (CSF) ATN category. A subcohort had longitudinal data, and a subgroup was neuropathologically evaluated. RESULTS: We observed a significant difference in Aß42/40 after 12 months in the A+T- group. Post mortem neuropathologic analyses indicated that most of the p-Tau 181 positive (T+) cases also had a high Braak stage. DISCUSSION: This suggests that DLB patients who are A+ but T- may need to be monitored to determine whether they remain A+ or ever progress to T positivity. HIGHLIGHTS: Some A+T- DLB subjects transition from A+ to negative after 12-months. Clinically diagnosed DLB with LBP-AD (A+T+) maintain their positivity. Clinically diagnosed DLB with LBP-AD (A+T+) maintain their positivity. Monitoring of the A+T- sub-type of DLB may be necessary.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad por Cuerpos de Lewy/diagnóstico , Enfermedad por Cuerpos de Lewy/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeo
4.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39273614

RESUMEN

Alzheimer's disease is the most common form of dementia, characterized by the pathological accumulation of amyloid-beta (Aß) plaques and tau neurofibrillary tangles. Triggering receptor expressed on myeloid cells 2 (TREM2) is increasingly recognized as playing a central role in Aß clearance and microglia activation in AD. The TREM2 gene transcriptional product is alternatively spliced to produce three different protein isoforms. The canonical TREM2 isoform binds to DAP12 to activate downstream pathways. However, little is known about the function or interaction partners of the alternative TREM2 isoforms. The present study utilized a computational approach in a systematic search for new interaction partners of the TREM2 isoforms by integrating several state-of-the-art structural bioinformatics tools from initial large-scale screening to one-on-one corroborative modeling and eventual all-atom visualization. CD9, a cell surface glycoprotein involved in cell-cell adhesion and migration, was identified as a new interaction partner for two TREM2 isoforms, and CALM, a calcium-binding protein involved in calcium signaling, was identified as an interaction partner for a third TREM2 isoform, highlighting the potential role of cell adhesion and calcium regulation in AD.


Asunto(s)
Empalme Alternativo , Enfermedad de Alzheimer , Glicoproteínas de Membrana , Unión Proteica , Isoformas de Proteínas , Receptores Inmunológicos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Humanos , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Biología Computacional/métodos
5.
J Immunol ; 204(5): 1111-1118, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31959733

RESUMEN

Individuals with Down syndrome (DS) develop Alzheimer's disease (AD)-related neuropathology, characterized by amyloid plaques with amyloid ß (Aß) and neurofibrillary tangles with tau accumulation. Peripheral inflammation and the innate immune response are elevated in DS. Triggering receptor expressed in myeloid cells 2 (TREM2) genetic variants are risk factors for AD and other neurodegenerative diseases. Soluble TREM2 (sTREM2), a soluble cleavage product of TREM2, is elevated in AD cerebrospinal fluid and positively correlates with cognitive decline. There is relatively little information about TREM2 in DS. Our objective was to examine the relationship between sTREM2 and inflammatory markers in young adults with DS, prior to the development of dementia symptoms. Because TREM2 plays a role in the innate immune response and has been associated with dementia, the hypothesis of this exploratory study was that young adults with DS predementia (n = 15, mean age = 29.5 y) would exhibit a different relationship between sTREM2 and inflammatory markers in plasma, compared with neurotypical, age-matched controls (n = 16, mean age = 29.6 y). Indeed, young adults with DS had significantly elevated plasma sTREM2 and inflammatory markers. Additionally, in young adults with DS, sTREM2 correlated positively with 24 of the measured cytokines, whereas there were no significant correlations in the control group. Hierarchical clustering of sTREM2 and cytokine concentrations also differed between the groups, supporting the hypothesis that its function is altered in people with DS predementia. This preliminary report of human plasma provides a basis for future studies investigating the relationship between TREM2 and the broader immune response predementia.


Asunto(s)
Síndrome de Down/inmunología , Mediadores de Inflamación/inmunología , Glicoproteínas de Membrana/inmunología , Receptores Inmunológicos/inmunología , Adulto , Biomarcadores/sangre , Citocinas/sangre , Citocinas/inmunología , Síndrome de Down/sangre , Femenino , Humanos , Mediadores de Inflamación/sangre , Masculino , Glicoproteínas de Membrana/sangre , Receptores Inmunológicos/sangre
6.
J Hum Genet ; 63(4): 459-471, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29371683

RESUMEN

The apolipoprotein E (APOE) ε4 allele is the major genetic risk factor for Alzheimer's disease (AD). Multiple regulatory elements, spanning the extended TOMM40-APOE-APOC2 region, regulate gene expression at this locus. Regulatory element DNA methylation changes occur under different environmental conditions, such as disease. Our group and others have described an APOE CpG island as hypomethylated in AD, compared to cognitively normal controls. However, little is known about methylation of the larger TOMM40-APOE-APOC2 region. The hypothesis of this investigation was that regulatory element methylation levels of the larger TOMM40-APOE-APOC2 region are associated with AD. The aim was to determine whether DNA methylation of the TOMM40-APOE-APOC2 region differs in AD compared to cognitively normal controls in post-mortem brain and peripheral blood. DNA was extracted from human brain (n = 12) and peripheral blood (n = 67). A methylation array was used for this analysis. Percent methylation within the TOMM40-APOE-APOC2 region was evaluated for differences according to tissue type, disease state, AD-related biomarkers, and gene expression. Results from this exploratory analysis suggest that regulatory element methylation levels within the larger TOMM40-APOE-APOC2 gene region correlate with AD-related biomarkers and TOMM40 or APOE gene expression in AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Apolipoproteína C-II/genética , Apolipoproteínas E/genética , Metilación de ADN , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Proteínas de Transporte de Membrana/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Biomarcadores , Biopsia , Estudios de Casos y Controles , Cerebelo/metabolismo , Cerebelo/patología , Islas de CpG , Femenino , Expresión Génica , Sitios Genéticos , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Masculino , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Especificidad de Órganos/genética , Regiones Promotoras Genéticas
7.
Hum Mol Genet ; 22(24): 5036-47, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23892237

RESUMEN

The human apolipoprotein E (APOE) gene plays an important role in lipid metabolism. It has three common genetic variants, alleles ε2/ε3/ε4, which translate into three protein isoforms of apoE2, E3 and E4. These isoforms can differentially influence total serum cholesterol levels; therefore, APOE has been linked with cardiovascular disease. Additionally, its ε4 allele is strongly associated with the risk of Alzheimer's disease (AD), whereas the ε2 allele appears to have a modest protective effect for AD. Despite decades of research having illuminated multiple functional differences among the three apoE isoforms, the precise mechanisms through which different APOE alleles modify diseases risk remain incompletely understood. In this study, we examined the genomic structure of APOE in search for properties that may contribute novel biological consequences to the risk of disease. We identify one such element in the ε2/ε3/ε4 allele-carrying 3'-exon of APOE. We show that this exon is imbedded in a well-defined CpG island (CGI) that is highly methylated in the human postmortem brain. We demonstrate that this APOE CGI exhibits transcriptional enhancer/silencer activity. We provide evidence that this APOE CGI differentially modulates expression of genes at the APOE locus in a cell type-, DNA methylation- and ε2/ε3/ε4 allele-specific manner. These findings implicate a novel functional role for a 3'-exon CGI and support a modified mechanism of action for APOE in disease risk, involving not only the protein isoforms but also an epigenetically regulated transcriptional program at the APOE locus driven by the APOE CGI.


Asunto(s)
Apolipoproteínas E/genética , Elementos de Facilitación Genéticos , Epigénesis Genética , Transcriptoma , Composición de Base , Secuencia de Bases , Encéfalo/metabolismo , Línea Celular , Islas de CpG , Metilación de ADN , Exones , Regulación de la Expresión Génica , Orden Génico , Humanos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Elementos Silenciadores Transcripcionales , Transcripción Genética
8.
Mov Disord ; 30(7): 936-44, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25808939

RESUMEN

BACKGROUND: Of recent interest is the finding that certain cerebrospinal fluid (CSF) biomarkers traditionally linked to Alzheimer's disease (AD), specifically amyloid beta protein (Aß), are abnormal in PD CSF. The aim of this exploratory investigation was to determine whether genetic variation within the amyloid precursor protein (APP) processing pathway genes correlates with CSF Aß42 levels in Parkinson's disease (PD). METHODS: Parkinson's disease (n = 86) and control (n = 161) DNA were genotyped for 19 regulatory region tagging single-nucleotide polymorphisms (SNPs) within nine genes (APP, ADAM10, BACE1, BACE2, PSEN1, PSEN2, PEN2, NCSTN, and APH1B) involved in the cleavage of APP. The SNP genotypes were tested for their association with CSF biomarkers and PD risk while adjusting for age, sex, and APOE ɛ4 status. RESULTS: Significant correlation with CSF Aß42 levels in PD was observed for two SNPs, (APP rs466448 and APH1B rs2068143). Conversely, significant correlation with CSF Aß42 levels in controls was observed for three SNPs (APP rs214484, rs2040273, and PSEN1 rs362344). CONCLUSIONS: In addition, results of this exploratory investigation suggest that an APP SNP and an APH1B SNP are marginally associated with PD CSF Aß42 levels in APOE ɛ4 noncarriers. Further hypotheses generated include that decreased CSF Aß42 levels are in part driven by genetic variation in APP processing genes. Additional investigation into the relationship between these findings and clinical characteristics of PD, including cognitive impairment, compared with other neurodegenerative diseases, such as AD, are warranted. © 2015 International Parkinson and Movement Disorder Society.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos beta-Amiloides/líquido cefalorraquídeo , Precursor de Proteína beta-Amiloide/genética , Enfermedad de Parkinson/genética , Fragmentos de Péptidos/líquido cefalorraquídeo , Anciano , Anciano de 80 o más Años , Apolipoproteína E4/genética , Biomarcadores/líquido cefalorraquídeo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/líquido cefalorraquídeo , Polimorfismo de Nucleótido Simple
9.
Neurol Res Pract ; 6(1): 39, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39085927

RESUMEN

INTRODUCTION: Given the prevalence and staggering cost of neurological disorders, there is dire need for effective early detection and intervention tools. Emerging evidence suggests that multidisciplinary lifestyle interventions (MLI) may mitigate the risk and progression of neurological disorders. The objectives of this protocol are (1) to test the impact of MLI on the progression of neurological disorders and (2) to identify multi-omic biomarkers for early stages of neurological disease and the impact of MLIs on these biomarkers. METHODS AND ANALYSIS: We present the Multidisciplinary lifestyle Interventions for Neurological Disorders during the Silent phase (MINDS) protocol, a randomized controlled trial of MLI in neurologically healthy older adults (≥ 50 years old) exhibiting elevated risk for common neurological disorders: stroke, epilepsy, Parkinson's Disease, or Alzheimer's disease and related dementias. Participants will be randomly assigned to intervention (n = 100) or control (n = 100) groups. The intervention group will receive 3 months of weekly 2-hour sessions on diet education, yoga, music therapy, and cognitive skills training. The participants' neurological health and engagement in relevant lifestyle practices will be assessed at regular intervals for 12 months. Neuroimaging and samples for multi-omic analyses will be collected at baseline, and at 3 months and 12 months after enrollment. Primary outcomes will be signs of progression of the neurological disorder risk that qualified them for study enrollment or a clinical diagnosis of the disorder. Secondary and exploratory outcomes will be based on self-reported health and multi-omic data. Data analysis will include between-group and longitudinal within-group analyses. PERSPECTIVES: The MINDS protocol and trial aims to clarify the impact of MLI on the progression of neurological disorder risk or diagnosis in older adults and to identify biomarkers that can be used to confirm MLI efficacy. The ability to validate the impact of MLI on neurological disorder progression based on biomarker data allows the identification of individuals most likely to benefit from such therapies in the early stages of neurological disease. TRIAL REGISTRATION: The trial is registered on the National Institutes of Health (NIH) ClinicalTrials.gov (NCT05984056) site. It was registered on August 2nd, 2023. The trial has full approval of the Cleveland Clinic Internal Review Board.

10.
Biomarkers ; 18(5): 455-66, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23822153

RESUMEN

MicroRNA (miRNA) may be potential biomarkers of Alzheimer's disease (AD). The objective of this investigation was to demonstrate that miRNAs in human brain or biofluids are differentially expressed according to disease status, tissue type, neuritic plaque score or Braak stage. Post-mortem brain (PMB) miRNA were profiled using arrays and validated using quantitative RT-PCR (qRT-PCR). Five qRT-PCR-validated miRNAs were measured in an independent sample of PMB, cerebrospinal fluid and plasma from the same subjects. Plasma miR-15a was found to be associated with plaque score in the independent sample. In conclusion, miRNA present in human biofluids may offer utility as biomarkers of AD.


Asunto(s)
Enfermedad de Alzheimer/líquido cefalorraquídeo , Encéfalo/metabolismo , MicroARNs/líquido cefalorraquídeo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/diagnóstico , Área Bajo la Curva , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Estudios de Casos y Controles , Línea Celular Tumoral , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , MicroARNs/sangre , MicroARNs/genética , Persona de Mediana Edad , Interferencia de ARN , Curva ROC , Transcriptoma
11.
Alzheimers Dement ; 9(5): 554-61, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23183136

RESUMEN

BACKGROUND: This study investigates the association between TOMM40 poly-T length, age at onset, and neuropathology in individuals with Alzheimer's disease (AD) with the apolipoprotein E (APOE) ε3/ε3 allele. METHODS: Thirty-two presenilin 1 (PSEN1) mutation carriers with AD, 27 presenilin 2 (PSEN2) mutation carriers with AD, 59 participants with late-onset AD (LOAD), and 168 autopsied subjects from a community-based cohort were genotyped for TOMM40 intron 6 poly-T (rs10524523) length using short tandem repeat assays. RESULTS: Among AD individuals with PSEN2 mutations, the presence of a long poly-T was associated with an earlier age at onset, whereas there were no such associations for subjects with PSEN1 mutations or LOAD. In community-based participants, the presence of a long poly-T was associated with increased neuritic tangles and a greater likelihood of pathologically diagnosed AD. CONCLUSION: TOMM40 intron 6 poly-T length may explain some of the variation in age at onset in PSEN2 familial AD and may be associated with AD neuropathology in persons with APOE ε3/ε3.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E3/genética , Predisposición Genética a la Enfermedad/genética , Proteínas de Transporte de Membrana/genética , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Femenino , Genotipo , Humanos , Intrones , Masculino , Persona de Mediana Edad , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación , Poli T/genética , Presenilina-1/genética , Presenilina-2/genética
12.
J Hum Genet ; 57(1): 18-25, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22089642

RESUMEN

Genetic variation within the apolipoprotein E gene (APOE) locus is associated with late-onset Alzheimer's disease risk and quantitative traits as well as apoE expression in multiple tissues. The aim of this investigation was to explore the influence of APOE locus cis-regulatory element enhancer region genetic variation on regional gene promoter activity. Luciferase reporter constructs containing haplotypes of APOE locus gene promoters; APOE, APOC1 and TOMM40, and regional putative enhancers; TOMM40 intervening sequence (IVS)2-4, TOMM40 IVS6 poly-T, as well as previously described enhancers; multienhancer 1 (ME1), or brain control region (BCR), were evaluated for their effects on luciferase activity in three human cell lines. Results of this investigation demonstrate that in SHSY5Y cells, the APOE promoter is significantly influenced by the TOMM40 IVS2-4 and ME1, and the TOMM40 promoter is significantly influenced by the TOMM40 IVS6 poly-T, ME1 and BCR. In HepG2 cells, theTOMM40 promoter is significantly influenced by all four enhancers, whereas the APOE promoter is not influenced by any of the enhancers. The main novel finding of this investigation was that multiple APOE locus cis-elements influence both APOE and TOMM40 promoter activity according to haplotype and cell type, suggesting that a complex transcriptional regulatory structure modulates regional gene expression.


Asunto(s)
Apolipoproteínas E/genética , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica , Variación Genética , Proteínas de Transporte de Membrana/genética , Línea Celular Tumoral , Genes Reporteros/genética , Sitios Genéticos/genética , Genoma Humano/genética , Haplotipos/genética , Humanos , Desequilibrio de Ligamiento/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Regiones Promotoras Genéticas
13.
Am J Med Genet B Neuropsychiatr Genet ; 159B(7): 874-83, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22927204

RESUMEN

Alzheimer's disease (AD) is characterized by the presence in the brain of amyloid plaques, consisting predominately of the amyloid ß peptide (Aß), and neurofibrillary tangles, consisting primarily of tau. Hyper-phosphorylated-tau (p-tau) contributes to neuronal damage, and both p-tau and total-tau (t-tau) levels are elevated in AD cerebrospinal fluid (CSF) compared to cognitively normal controls. Our hypothesis was that increased ratios of CSF phosphorylated-tau levels relative to total-tau levels correlate with regulatory region genetic variation of kinase or phosphatase genes biologically associated with the phosphorylation status of tau. Eighteen SNPs located within 5' and 3' regions of 5 kinase and 4 phosphatase genes, as well as two SNPs within regulatory regions of the MAPT gene were chosen for this analysis. The study sample consisted of 101 AD patients and 169 cognitively normal controls. Rs7768046 in the FYN kinase gene and rs913275 in the PPP2R4 phosphatase gene were both associated with CSF p-tau and t-tau levels in AD. These SNPs were also differentially associated with either CSF t-tau (rs7768046) or CSF p-tau (rs913275) relative to t-tau levels in AD compared to controls. These results suggest that rs7768046 and rs913275 both influence CSF tau levels in an AD-associated manner.


Asunto(s)
Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/genética , Proteínas tau/líquido cefalorraquídeo , Proteínas tau/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Fosforilación , Polimorfismo de Nucleótido Simple , Proteínas tau/metabolismo
14.
Cell Rep ; 41(9): 111717, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36450252

RESUMEN

Translating human genetic findings (genome-wide association studies [GWAS]) to pathobiology and therapeutic discovery remains a major challenge for Alzheimer's disease (AD). We present a network topology-based deep learning framework to identify disease-associated genes (NETTAG). We leverage non-coding GWAS loci effects on quantitative trait loci, enhancers and CpG islands, promoter regions, open chromatin, and promoter flanking regions under the protein-protein interactome. Via NETTAG, we identified 156 AD-risk genes enriched in druggable targets. Combining network-based prediction and retrospective case-control observations with 10 million individuals, we identified that usage of four drugs (ibuprofen, gemfibrozil, cholecalciferol, and ceftriaxone) is associated with reduced likelihood of AD incidence. Gemfibrozil (an approved lipid regulator) is significantly associated with 43% reduced risk of AD compared with simvastatin using an active-comparator design (95% confidence interval 0.51-0.63, p < 0.0001). In summary, NETTAG offers a deep learning methodology that utilizes GWAS and multi-genomic findings to identify pathobiology and drug repurposing in AD.


Asunto(s)
Enfermedad de Alzheimer , Aprendizaje Profundo , Humanos , Estudio de Asociación del Genoma Completo , Reposicionamiento de Medicamentos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Gemfibrozilo , Estudios Retrospectivos
15.
Mol Immunol ; 131: 171-179, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33461764

RESUMEN

Alzheimer's disease (AD) is characterized by the accumulation in the brain of extracellular amyloid ß (Aß) plaques as well as intraneuronal inclusions (neurofibrillary tangles) consisting of total tau and phosphorylated tau. Also present are dystrophic neurites, loss of synapses, neuronal death, and gliosis. AD genetic studies have highlighted the importance of inflammation in this disease by identifying several risk associated immune response genes, including TREM2. TREM2 has been strongly implicated in basic microglia function including, phagocytosis, apoptosis, and the inflammatory response to Aß in mouse brain and primary cells. These studies show that microglia are key players in the response to Aß and in the accumulation of AD pathology. However, details are still missing about which apoptotic or inflammatory factors rely on TREM2 in their response to Aß, especially in human cell lines. Given these previous findings our hypothesis is that TREM2 influences the response to Aß toxicity by enhancing phagocytosis and inhibiting both the BCL-2 family of apoptotic proteins and pro-inflammatory cytokines. Aß42 treatment of the human microglial cell line, HMC3 cells, was performed and TREM2 was overexpressed or silenced and the phagocytosis, apoptosis and inflammatory response were evaluated. Results indicate that a robust phagocytic response to Aß after 24 h requires TREM2 in HMC3 cells. Also, TREM2 inhibits Aß induced apoptosis by activating the Mcl-1/Bim complex. TREM2 is involved in activation of IP-10, MIP-1a, and IL-8, while it inhibits FGF-2, VEGF and GRO. Taken together, TREM2 plays a role in enhancing the microglial functional response to Aß toxicity in HMC3 cells. This novel information suggests that therapeutic strategies that seek to activate TREM2 may not only enhance phagocytosis and inhibit apoptosis, but may also inhibit beneficial inflammatory factors, emphasizing the need to define TREM2-related inflammatory activity in not only mouse models of AD, but also in human AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Apoptosis/fisiología , Inflamación/metabolismo , Glicoproteínas de Membrana/metabolismo , Fagocitos/metabolismo , Receptores Inmunológicos/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Línea Celular , Línea Celular Tumoral , Células Hep G2 , Humanos , Microglía/metabolismo , Fagocitosis/fisiología , Placa Amiloide/metabolismo , Células THP-1 , Células U937
16.
Front Aging Neurosci ; 13: 676744, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276339

RESUMEN

Inflammatory changes are among the key markers of Alzheimer's disease (AD) related pathological changes. Pro-inflammatory analytes have been related to cognitive decline while others have been related to attenuating neuronal death. Among them, changes in cerebrospinal fluid (CSF) levels of soluble triggering receptor expressed on myeloid cells 2 (sTREM2) and soluble tumor necrosis factor receptor 2 (sTNFR2) have been described as impacting favorable clinical outcomes in AD. We therefore evaluate the effect of CSF sTREM2 and sTNFR2 when taken together on AD biomarkers and longitudinal clinical decline to understand their relative role on impacting AD clinical biomarkers and subsequent clinical outcomes. This longitudinal observational cohort study included 168 amyloid-positive (A+) and p-tau-positive (T+) participants with mild cognitive impairment (MCI) or AD dementia from the Alzheimer's Disease Neuroimaging Initiative (ADNI) with 109 of them having concomitant CSF sTREM2 and sTNFR2 data and 48 A+ T+ participants with MCI from a tertiary memory clinic cohort. An exploratory analysis was performed using data from 86 cognitively normal (CN) participants from ADNI with 72 of them having concomitant CSF AD biomarkers and CSF sTREM2 and sTNFR2 data. General linear models were used to evaluate the effect of sTREM2 and sTNFR2 levels on baseline CSF Aß42, t-tau, and p-tau, and a linear mixed-effects model was used to assess longitudinal cognitive change after controlling for well-known covariates. Among ADNI A+ T+ MCI and AD dementia participants, CSF sTNFR2 had a stronger association, than CSF sTREM2, with CSF t-tau and p-tau. This was replicated among A+ T+ MCI participants from the memory clinic cohort. On the contrary, among A+ T+ CN participants, CSF sTREM2 explained significant variance in CSF t-tau and p-tau, while CSF sTNFR2 did not. When the effects of CSF sTNFR2 and t-tau on longitudinal cognitive change were taken into account, higher CSF sTREM2 predicted slower cognitive decline in A+ T+ AD dementia participants and faster decline in A+ T+ CN participants. Our results show that given the dynamic changes in sTREM2 and sTNFR2, the clinical impact of these distinct inflammation related biomarkers in tracking AD temporal progression across disease stages are likely to differ.

17.
Front Aging Neurosci ; 13: 638922, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33716716

RESUMEN

Tumor necrosis factor receptor 2 (TNFR2) promotes neuronal survival downstream. This longitudinal study evaluated whether the TNFRSF1B gene encoding TNFR2 and levels of its soluble form (sTNFR2) affect Alzheimer disease (AD) biomarkers and clinical outcomes. Data analyzed included 188 patients in the Alzheimer's Disease Neuroimaging Initiative (ADNI) who had mild cognitive impairment (MCI) and AD dementia. Further, a replication study was performed in 48 patients with MCI with positive AD biomarkers who were treated at a memory clinic. Cerebrospinal fluid (CSF) sTNFR2 levels along with two related TNFRSF1B gene single nucleotide polymorphisms (SNPs) rs976881 and rs1061622 were assessed. General linear models were used to evaluate the effect of CSF sTNFR2 levels and each SNP in relationship to CSF t-tau and p-tau, cognitive domains, MRI brain measures, and longitudinal cognitive changes after adjustments were made for covariates such as APOE ε4 status. In the ADNI cohort, a significant interaction between rs976881 and CSF sTNFR2 modulates CSF t-tau and p-tau levels; hippocampal and whole brain volumes; and Digit Span Forwards subtest scores. In the replication cohort, a significant interaction between rs976881 and CSF sTNFR2 modulates CSF p-tau. A significant interaction between rs976881 and CSF sTNFR2 also impacts Clinical Dementia Rating Sum of Boxes scores over 12 months in the ADNI cohort. The interaction between TNFRSF1B variant rs976881 and CSF sTNFR2 levels was noted to modulate multiple AD-associated severity markers and cognitive domains. This interaction impacts resilience-related clinical outcomes in AD and lends support to sTNFR2 as a promising candidate for therapeutic targeting to improve clinical outcomes of interest.

18.
Am J Alzheimers Dis Other Demen ; 36: 1533317520981225, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33445953

RESUMEN

We describe a clinical, imaging and biomarker phenotype associated with an amyloid precursor gene (APP) E665D variant in a 45-year-old man with progressive cognitive and behavioral dysfunction. Brain MRI showed bilateral, confluent T2 hyperintensities predominantly in the anterior white matter. Amyloid imaging and CSF testing were consistent with amyloid deposition. 7 Tesla MRI revealed cerebral microhemorrhages suggestive of cerebral amyloid angiopathy (CAA). Contrary to previous reports, this case raises the possibility that the APP E665D genetic change may be pathogenic, particularly given the abnormal Alzheimer's disease biomarkers observed in the cerebrospinal fluid, positive amyloid imaging and imaging evidence for CAA in a relatively young patient with progressive cognitive decline.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Angiopatía Amiloide Cerebral , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Biomarcadores , Humanos , Masculino , Persona de Mediana Edad , Fenotipo
19.
Alzheimers Res Ther ; 13(1): 24, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441136

RESUMEN

BACKGROUND: Recent DNA/RNA sequencing and other multi-omics technologies have advanced the understanding of the biology and pathophysiology of AD, yet there is still a lack of disease-modifying treatments for AD. A new approach to integration of the genome, transcriptome, proteome, and human interactome in the drug discovery and development process is essential for this endeavor. METHODS: In this study, we developed AlzGPS (Genome-wide Positioning Systems platform for Alzheimer's Drug Discovery, https://alzgps.lerner.ccf.org ), a comprehensive systems biology tool to enable searching, visualizing, and analyzing multi-omics, various types of heterogeneous biological networks, and clinical databases for target identification and development of effective prevention and treatment for AD. RESULTS: Via AlzGPS: (1) we curated more than 100 AD multi-omics data sets capturing DNA, RNA, protein, and small molecule profiles underlying AD pathogenesis (e.g., early vs. late stage and tau or amyloid endophenotype); (2) we constructed endophenotype disease modules by incorporating multi-omics findings and human protein-protein interactome networks; (3) we provided possible treatment information from ~ 3000 FDA approved/investigational drugs for AD using state-of-the-art network proximity analyses; (4) we curated nearly 300 literature references for high-confidence drug candidates; (5) we included information from over 1000 AD clinical trials noting drug's mechanisms-of-action and primary drug targets, and linking them to our integrated multi-omics view for targets and network analysis results for the drugs; (6) we implemented a highly interactive web interface for database browsing and network visualization. CONCLUSIONS: Network visualization enabled by AlzGPS includes brain-specific neighborhood networks for genes-of-interest, endophenotype disease module networks for omics-of-interest, and mechanism-of-action networks for drugs targeting disease modules. By virtue of combining systems pharmacology and network-based integrative analysis of multi-omics data, AlzGPS offers actionable systems biology tools for accelerating therapeutic development in AD.


Asunto(s)
Enfermedad de Alzheimer , Descubrimiento de Drogas , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Humanos , Proteoma , Biología de Sistemas , Transcriptoma
20.
Brain Imaging Behav ; 15(4): 2051-2060, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33070299

RESUMEN

Studies of resting-state functional connectivity MRI in Alzheimer's disease suggest that disease stage plays a role in functional changes of the default mode network. Individuals with the genetic disorder Down syndrome show an increased incidence of early-onset Alzheimer's-type dementia, along with early and nearly universal neuropathologic changes of Alzheimer's disease. The present study examined high-resolution functional connectivity of the default mode network in 11 young adults with Down syndrome that showed no measurable symptoms of dementia and 11 age- and sex-matched neurotypical controls. We focused on within-network connectivity of the default mode network, measured from both anterior and posterior aspects of the cingulate cortex. Sixty-eight percent of connections to the posterior cingulate and 26% to the anterior cingulate showed reduced strength in the group with Down syndrome (p < 0.01). The Down syndrome group showed increased connectivity strength from the anterior cingulate to the bilateral inferior frontal gyri and right putamen (p < 0.005). In an exploratory analysis, connectivity in the group with Down syndrome showed regional relationships to plasma measures of inflammatory markers and t-tau. In non-demented adults with Down syndrome, functional connectivity within the default mode network may be analogous to changes reported in preclinical Alzheimer's disease, and warrants further investigation as a measure of dementia risk.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Red en Modo Predeterminado , Síndrome de Down/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA