Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 57(9): 4979-4988, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29648807

RESUMEN

We aimed to quantify the interaction of water-soluble-functionalized CdS quantum dots (QDs) with metal cations from their composition and physical properties. From the diameter of thioglycerol-capped nanoparticles (TG-CdS QDs) measured by electronic microscopy ( D = 12.3 ± 0.3 nm), we calculated the molecular mass of the individual particle MAQD = (3 ± 0.5) × 106 g·mol-1 and its molar absorption coefficient ε450 = 21 × 106 M-1·cm-1. We built a three-dimensional model of the TG-CdS QDs in agreement with the structural data, which allowed us to quantify the number of thioglycerol grafted chains to ∼2000 per QD. This value fully matches the saturation binding curve of Al3+ cations interacting with TG-CdS QDs. The reaction occurred with a slow association rate ( kon = 2.1 × 103 M-1·s-1), as expected for heavy QDs. The photophysical properties of the functionalized QDs were studied using an absolute QD concentration of 7 nM, which allowed us to investigate the interaction with 14 metallic cations in water. The fluorescence intensity of TG-CdS QDs could be quenched only in the presence of Al3+ ions in the range 0.2-10 µM but not with other cations and was not observed with other kinds of grafting chains.

2.
Environ Sci Pollut Res Int ; 29(48): 72747-72763, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35610458

RESUMEN

In this study, mercaptosuccinic acid capped CdSe nanocrystals were successfully synthesized and used as photocatalyst for the effective removal of methylene blue (MB) inaqueous solution under visible light and sunlight irradiations including its analysis with statistical physics theory. Dye adsorption properties of these nanocrystals were investigated via experimental kinetics and equilibrium studies. These experimental data were modeled via the application of statistical physics theory to explain the corresponding adsorption mechanism and to characterize the steric and energetic parameters involved in the dye removal. A maximum adsorption capacity of 27.07 mg g-1 (80% of dye removal) was observed in 10 min using an initial concentration of 30 mg L-1. Statistical physics calculations indicated that the adsorption energy was lower than 40 kJ mol-1. It was also established that the dye adsorption was associated to the electrostatic interactions and hydrogen bonding where dye aggregation and multi-molecular adsorption were expected. Overall, the dye removal was a spontaneous, feasible and exothermic. It was concluded that adsorption properties of CdSe-MSA nanocrystals improved the dye photo-catalytic degradation efficiency under visible light thus achieving up to 80% degradation efficiency in 60 min. The synergic effect of adsorption and photo-catalytic degradation performance was mainly due to the surface area (136.43 m2 g-1), small size (3.7 nm), and structural defects (selenium vacancies Se, interstitial of cadmium ICd) of CdSe nanocrystals, which enhanced both the response of these nanomaterials to visible light and their photo-catalytic activity. In summary, these nanocrystals are promising materials to be used in wastewater treatment under sunlight for the removal of organic compounds like dyes.


Asunto(s)
Compuestos de Cadmio , Nanopartículas , Compuestos de Selenio , Selenio , Contaminantes Químicos del Agua , Adsorción , Cadmio , Colorantes/química , Concentración de Iones de Hidrógeno , Cinética , Azul de Metileno/química , Nanopartículas/química , Física , Agua
3.
Anal Chim Acta ; 1028: 50-58, 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-29884353

RESUMEN

Water soluble CdS quantum dots (QDs) were synthesized by a simple aqueous chemical route using mercaptopropionic acid (MPA) as a stabilizer. These QDs had a fluorescence emission band maximum at 540 nm with a FWHM ∼130 nm and a quantum yield of ∼12%. Transmission electronic microscopy images were used to determine the QD diameter of 8.9 ±â€¯0.4 nm. From this value we calculated the molecular mass M(QD) = 1.17 × 106 g mol-1 and the extinction coefficient at the band edge (450 nm) ε450 = 4.7 × 106 cm-1 M-1, which allowed to determine the true molar concentration of 17 nM for spectroscopic measurements in solution. The fluorescence intensity of MPA-CdS QDs was quenched only in the presence of Co2+ ions, but not in the presence of thirteen other metal cations. The fluorescence quenching of MPA-CdS QDs appeared proportional to the Co2+ concentration in the range 0.04-2 µM. Based on a fluorescence peak position and a lifetime both independent from Co2+ concentration, the quenching mechanism of MPA-CdS QDs appeared static. Because the strong electronic absorption of Co2+ overlaps the emission of QDs, our results can be explained by Förster energy transfer from QD to the bound Co2+ cations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA