Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 84(11): 2070-2086.e20, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38703770

RESUMEN

The MYCN oncoprotein binds active promoters in a heterodimer with its partner protein MAX. MYCN also interacts with the nuclear exosome, a 3'-5' exoribonuclease complex, suggesting a function in RNA metabolism. Here, we show that MYCN forms stable high-molecular-weight complexes with the exosome and multiple RNA-binding proteins. MYCN binds RNA in vitro and in cells via a conserved sequence termed MYCBoxI. In cells, MYCN associates with thousands of intronic transcripts together with the ZCCHC8 subunit of the nuclear exosome targeting complex and enhances their processing. Perturbing exosome function results in global re-localization of MYCN from promoters to intronic RNAs. On chromatin, MYCN is then replaced by the MNT(MXD6) repressor protein, inhibiting MYCN-dependent transcription. RNA-binding-deficient alleles show that RNA-binding limits MYCN's ability to activate cell growth-related genes but is required for MYCN's ability to promote progression through S phase and enhance the stress resilience of neuroblastoma cells.


Asunto(s)
Proteína Proto-Oncogénica N-Myc , Proteínas Nucleares , Proteínas Oncogénicas , Proteínas de Unión al ARN , Proteína Proto-Oncogénica N-Myc/metabolismo , Proteína Proto-Oncogénica N-Myc/genética , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Oncogénicas/metabolismo , Proteínas Oncogénicas/genética , Regiones Promotoras Genéticas , Línea Celular Tumoral , Neuroblastoma/metabolismo , Neuroblastoma/genética , Neuroblastoma/patología , Exosomas/metabolismo , Exosomas/genética , Intrones , Unión Proteica , Núcleo Celular/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Regulación Neoplásica de la Expresión Génica , ARN/metabolismo , ARN/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Proliferación Celular
2.
Mol Cell ; 83(23): 4272-4289.e10, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37951215

RESUMEN

Reactive aldehydes are produced by normal cellular metabolism or after alcohol consumption, and they accumulate in human tissues if aldehyde clearance mechanisms are impaired. Their toxicity has been attributed to the damage they cause to genomic DNA and the subsequent inhibition of transcription and replication. However, whether interference with other cellular processes contributes to aldehyde toxicity has not been investigated. We demonstrate that formaldehyde induces RNA-protein crosslinks (RPCs) that stall the ribosome and inhibit translation in human cells. RPCs in the messenger RNA (mRNA) are recognized by the translating ribosomes, marked by atypical K6-linked ubiquitylation catalyzed by the RING-in-between-RING (RBR) E3 ligase RNF14, and subsequently resolved by the ubiquitin- and ATP-dependent unfoldase VCP. Our findings uncover an evolutionary conserved formaldehyde-induced stress response pathway that protects cells against RPC accumulation in the cytoplasm, and they suggest that RPCs contribute to the cellular and tissue toxicity of reactive aldehydes.


Asunto(s)
ARN , Ubiquitina-Proteína Ligasas , Humanos , ARN/metabolismo , Ubiquitinación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Formaldehído/toxicidad , Aldehídos/toxicidad , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Mol Cell ; 82(8): 1589-1602.e5, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35263628

RESUMEN

A polyubiquitin chain can adopt a variety of shapes, depending on how the ubiquitin monomers are joined. However, the relevance of linkage for the signaling functions of polyubiquitin chains is often poorly understood because of our inability to control or manipulate this parameter in vivo. Here, we present a strategy for reprogramming polyubiquitin chain linkage by means of tailor-made, linkage- and substrate-selective ubiquitin ligases. Using the polyubiquitylation of the budding yeast replication factor PCNA in response to DNA damage as a model case, we show that altering the features of a polyubiquitin chain in vivo can change the fate of the modified substrate. We also provide evidence for redundancy between distinct but structurally similar linkages, and we demonstrate by proof-of-principle experiments that the method can be generalized to targets beyond PCNA. Our study illustrates a promising approach toward the in vivo analysis of polyubiquitin signaling.


Asunto(s)
Poliubiquitina , Ubiquitina-Proteína Ligasas , ADN , Daño del ADN , Poliubiquitina/genética , Antígeno Nuclear de Célula en Proliferación/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/genética
4.
Mol Cell ; 81(4): 830-844.e13, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33453168

RESUMEN

The MYC oncoprotein globally affects the function of RNA polymerase II (RNAPII). The ability of MYC to promote transcription elongation depends on its ubiquitylation. Here, we show that MYC and PAF1c (polymerase II-associated factor 1 complex) interact directly and mutually enhance each other's association with active promoters. PAF1c is rapidly transferred from MYC onto RNAPII. This transfer is driven by the HUWE1 ubiquitin ligase and is required for MYC-dependent transcription elongation. MYC and HUWE1 promote histone H2B ubiquitylation, which alters chromatin structure both for transcription elongation and double-strand break repair. Consistently, MYC suppresses double-strand break accumulation in active genes in a strictly PAF1c-dependent manner. Depletion of PAF1c causes transcription-dependent accumulation of double-strand breaks, despite widespread repair-associated DNA synthesis. Our data show that the transfer of PAF1c from MYC onto RNAPII efficiently couples transcription elongation with double-strand break repair to maintain the genomic integrity of MYC-driven tumor cells.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Elongación de la Transcripción Genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Línea Celular Tumoral , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-myc/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
5.
EMBO J ; 43(12): 2397-2423, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38760575

RESUMEN

The nucleoside analogue decitabine (or 5-aza-dC) is used to treat several haematological cancers. Upon its triphosphorylation and incorporation into DNA, 5-aza-dC induces covalent DNA methyltransferase 1 DNA-protein crosslinks (DNMT1-DPCs), leading to DNA hypomethylation. However, 5-aza-dC's clinical outcomes vary, and relapse is common. Using genome-scale CRISPR/Cas9 screens, we map factors determining 5-aza-dC sensitivity. Unexpectedly, we find that loss of the dCMP deaminase DCTD causes 5-aza-dC resistance, suggesting that 5-aza-dUMP generation is cytotoxic. Combining results from a subsequent genetic screen in DCTD-deficient cells with the identification of the DNMT1-DPC-proximal proteome, we uncover the ubiquitin and SUMO1 E3 ligase, TOPORS, as a new DPC repair factor. TOPORS is recruited to SUMOylated DNMT1-DPCs and promotes their degradation. Our study suggests that 5-aza-dC-induced DPCs cause cytotoxicity when DPC repair is compromised, while cytotoxicity in wild-type cells arises from perturbed nucleotide metabolism, potentially laying the foundations for future identification of predictive biomarkers for decitabine treatment.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1 , Decitabina , Ubiquitina-Proteína Ligasas , Decitabina/farmacología , Humanos , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Metilación de ADN/efectos de los fármacos , Antimetabolitos Antineoplásicos/farmacología , Animales , Sumoilación/efectos de los fármacos
6.
Nature ; 612(7938): 148-155, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36424410

RESUMEN

Oncoproteins of the MYC family drive the development of numerous human tumours1. In unperturbed cells, MYC proteins bind to nearly all active promoters and control transcription by RNA polymerase II2,3. MYC proteins can also coordinate transcription with DNA replication4,5 and promote the repair of transcription-associated DNA damage6, but how they exert these mechanistically diverse functions is unknown. Here we show that MYC dissociates from many of its binding sites in active promoters and forms multimeric, often sphere-like structures in response to perturbation of transcription elongation, mRNA splicing or inhibition of the proteasome. Multimerization is accompanied by a global change in the MYC interactome towards proteins involved in transcription termination and RNA processing. MYC multimers accumulate on chromatin immediately adjacent to stalled replication forks and surround FANCD2, ATR and BRCA1 proteins, which are located at stalled forks7,8. MYC multimerization is triggered in a HUWE16 and ubiquitylation-dependent manner. At active promoters, MYC multimers block antisense transcription and stabilize FANCD2 association with chromatin. This limits DNA double strand break formation during S-phase, suggesting that the multimerization of MYC enables tumour cells to proliferate under stressful conditions.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Humanos , Cromatina/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/metabolismo , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Roturas del ADN de Doble Cadena , Fase S , Sitios de Unión , ARN Mensajero/biosíntesis
7.
EMBO J ; 42(17): e112847, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37365982

RESUMEN

The paralogs CUL4A and CUL4B assemble cullin-RING E3 ubiquitin ligase (CRL) complexes regulating multiple chromatin-associated cellular functions. Although they are structurally similar, we found that the unique N-terminal extension of CUL4B is heavily phosphorylated during mitosis, and the phosphorylation pattern is perturbed in the CUL4B-P50L mutation causing X-linked intellectual disability (XLID). Phenotypic characterization and mutational analysis revealed that CUL4B phosphorylation is required for efficient progression through mitosis, controlling spindle positioning and cortical tension. While CUL4B phosphorylation triggers chromatin exclusion, it promotes binding to actin regulators and to two previously unrecognized CUL4B-specific substrate receptors (DCAFs), LIS1 and WDR1. Indeed, co-immunoprecipitation experiments and biochemical analysis revealed that LIS1 and WDR1 interact with DDB1, and their binding is enhanced by the phosphorylated N-terminal domain of CUL4B. Finally, a human forebrain organoid model demonstrated that CUL4B is required to develop stable ventricular structures that correlate with onset of forebrain differentiation. Together, our study uncovers previously unrecognized DCAFs relevant for mitosis and brain development that specifically bind CUL4B, but not the CUL4B-P50L patient mutant, by a phosphorylation-dependent mechanism.


Asunto(s)
Mitosis , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Cromatina , Encéfalo/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo
8.
Nucleic Acids Res ; 52(12): 6945-6963, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38783095

RESUMEN

Cellular senescence, a major driver of aging, can be stimulated by DNA damage, and is counteracted by the DNA repair machinery. Here we show that in p16INK4a-deficient cells, senescence induction by the environmental genotoxin B[a]P or ionizing radiation (IR) completely depends on p21CIP1. Immunoprecipitation-based mass spectrometry interactomics data revealed that during senescence induction and maintenance, p21CIP1 specifically inhibits CDK4 and thereby activates the DREAM complex. Genome-wide transcriptomics revealed striking similarities in the response induced by B[a]P and IR. Among the top 100 repressed genes 78 were identical between B[a]P and IR and 76 were DREAM targets. The DREAM complex transcriptionally silences the main proliferation-associated transcription factors E2F1, FOXM1 and B-Myb as well as multiple DNA repair factors. Knockdown of p21CIP1, E2F4 or E2F5 diminished both, repression of these factors and senescence. The transcriptional profiles evoked by B[a]P and IR largely overlapped with the profile induced by pharmacological CDK4 inhibition, further illustrating the role of CDK4 inhibition in genotoxic stress-induced senescence. Moreover, data obtained by live-cell time-lapse microscopy suggest the inhibition of CDK4 by p21CIP1 is especially important for arresting cells which slip through mitosis. Overall, we identified the p21CIP1/CDK4/DREAM axis as a master regulator of genotoxic stress-induced senescence.


Asunto(s)
Senescencia Celular , Quinasa 4 Dependiente de la Ciclina , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Daño del ADN , Proteínas de Interacción con los Canales Kv , Senescencia Celular/efectos de la radiación , Senescencia Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Humanos , Proteínas de Interacción con los Canales Kv/metabolismo , Proteínas de Interacción con los Canales Kv/genética , Radiación Ionizante , Reparación del ADN , Regulación de la Expresión Génica/efectos de la radiación , Proteínas Represoras
9.
Proc Natl Acad Sci U S A ; 120(5): e2217992120, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36689659

RESUMEN

SWItch/sucrose non-fermenting (SWI/SNF) complexes are a family of chromatin remodelers that are conserved across eukaryotes. Mutations in subunits of SWI/SNF cause a multitude of different developmental disorders in humans, most of which have no current treatment options. Here, we identify an alanine-to-valine-causing mutation in the SWI/SNF subunit snfc-5 (SMARCB1 in humans) that prevents embryonic lethality in Caenorhabditis elegans nematodes harboring a loss-of-function mutation in the SWI/SNF subunit swsn-1 (SMARCC1/2 in humans). Furthermore, we found that the combination of this specific mutation in snfc-5 and a loss-of-function mutation in either of the E3 ubiquitin ligases ubr-5 (UBR5 in humans) or hecd-1 (HECTD1 in humans) can restore development to adulthood in swsn-1 loss-of-function mutants that otherwise die as embryos. Using these mutant models, we established a set of 335 genes that are dysregulated in SWI/SNF mutants that arrest their development embryonically but exhibit near wild-type levels of expression in the presence of suppressor mutations that prevent embryonic lethality, suggesting that SWI/SNF promotes development by regulating some subset of these 335 genes. In addition, we show that SWI/SNF protein levels are reduced in swsn-1; snfc-5 double mutants and partly restored to wild-type levels in swsn-1; snfc-5; ubr-5 triple mutants, consistent with a model in which UBR-5 regulates SWI/SNF levels by tagging the complex for proteasomal degradation. Our findings establish a link between two E3 ubiquitin ligases and SWI/SNF function and suggest that UBR5 and HECTD1 could be potential therapeutic targets for the many developmental disorders caused by missense mutations in SWI/SNF subunits.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Humanos , Caenorhabditis elegans/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Ubiquitinas/metabolismo
10.
Nucleic Acids Res ; 50(20): 11600-11618, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36350633

RESUMEN

PARP1 mediates poly-ADP-ribosylation of proteins on chromatin in response to different types of DNA lesions. PARP inhibitors are used for the treatment of BRCA1/2-deficient breast, ovarian, and prostate cancer. Loss of DNA replication fork protection is proposed as one mechanism that contributes to the vulnerability of BRCA1/2-deficient cells to PARP inhibitors. However, the mechanisms that regulate PARP1 activity at stressed replication forks remain poorly understood. Here, we performed proximity proteomics of PARP1 and isolation of proteins on stressed replication forks to map putative PARP1 regulators. We identified TPX2 as a direct PARP1-binding protein that regulates the auto-ADP-ribosylation activity of PARP1. TPX2 interacts with DNA damage response proteins and promotes homology-directed repair of DNA double-strand breaks. Moreover, TPX2 mRNA levels are increased in BRCA1/2-mutated breast and prostate cancers, and high TPX2 expression levels correlate with the sensitivity of cancer cells to PARP-trapping inhibitors. We propose that TPX2 confers a mitosis-independent function in the cellular response to replication stress by interacting with PARP1.


Asunto(s)
Replicación del ADN , Poli(ADP-Ribosa) Polimerasa-1 , Proteómica , Roturas del ADN de Doble Cadena , Reparación del ADN , Poli(ADP-Ribosa) Polimerasa-1/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología
11.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34417301

RESUMEN

Canonical Wnt signaling plays critical roles in development and tissue renewal by regulating ß-catenin target genes. Recent evidence showed that ß-catenin-independent Wnt signaling is also required for faithful execution of mitosis. However, the targets and specific functions of mitotic Wnt signaling still remain uncharacterized. Using phosphoproteomics, we identified that Wnt signaling regulates the microtubule depolymerase KIF2A during mitosis. We found that Dishevelled recruits KIF2A via its N-terminal and motor domains, which is further promoted upon LRP6 signalosome formation during cell division. We show that Wnt signaling modulates KIF2A interaction with PLK1, which is critical for KIF2A localization at the spindle. Accordingly, inhibition of basal Wnt signaling leads to chromosome misalignment in somatic cells and pluripotent stem cells. We propose that Wnt signaling monitors KIF2A activity at the spindle poles during mitosis to ensure timely chromosome alignment. Our findings highlight a function of Wnt signaling during cell division, which could have important implications for genome maintenance, notably in stem cells.


Asunto(s)
Segregación Cromosómica , Cromosomas Humanos/genética , Cinesinas/metabolismo , Mitosis , Huso Acromático/fisiología , Vía de Señalización Wnt , Posicionamiento de Cromosoma , Humanos , Cinesinas/genética
12.
EMBO Rep ; 22(2): e50163, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33369872

RESUMEN

Dynamic control of ubiquitination by deubiquitinating enzymes is essential for almost all biological processes. Ubiquitin-specific peptidase 22 (USP22) is part of the SAGA complex and catalyzes the removal of mono-ubiquitination from histones H2A and H2B, thereby regulating gene transcription. However, novel roles for USP22 have emerged recently, such as tumor development and cell death. Apart from apoptosis, the relevance of USP22 in other programmed cell death pathways still remains unclear. Here, we describe a novel role for USP22 in controlling necroptotic cell death in human tumor cell lines. Loss of USP22 expression significantly delays TNFα/Smac mimetic/zVAD.fmk (TBZ)-induced necroptosis, without affecting TNFα-mediated NF-κB activation or extrinsic apoptosis. Ubiquitin remnant profiling identified receptor-interacting protein kinase 3 (RIPK3) lysines 42, 351, and 518 as novel, USP22-regulated ubiquitination sites during necroptosis. Importantly, mutation of RIPK3 K518 reduced necroptosis-associated RIPK3 ubiquitination and amplified necrosome formation and necroptotic cell death. In conclusion, we identify a novel role of USP22 in necroptosis and further elucidate the relevance of RIPK3 ubiquitination as crucial regulator of necroptotic cell death.


Asunto(s)
Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Ubiquitina Tiolesterasa , Apoptosis/genética , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Necrosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal , Ubiquitinación
13.
PLoS Genet ; 16(1): e1008581, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31978041

RESUMEN

Makorins are evolutionary conserved proteins that contain C3H-type zinc finger modules and a RING E3 ubiquitin ligase domain. In Drosophila, maternal Makorin 1 (Mkrn1) has been linked to embryonic patterning but the mechanism remained unsolved. Here, we show that Mkrn1 is essential for axis specification and pole plasm assembly by translational activation of oskar (osk). We demonstrate that Mkrn1 interacts with poly(A) binding protein (pAbp) and binds specifically to osk 3' UTR in a region adjacent to A-rich sequences. Using Drosophila S2R+ cultured cells we show that this binding site overlaps with a Bruno1 (Bru1) responsive element (BREs) that regulates osk translation. We observe increased association of the translational repressor Bru1 with osk mRNA upon depletion of Mkrn1, indicating that both proteins compete for osk binding. Consistently, reducing Bru1 dosage partially rescues viability and Osk protein level in ovaries from Mkrn1 females. We conclude that Mkrn1 controls embryonic patterning and germ cell formation by specifically activating osk translation, most likely by competing with Bru1 to bind to osk 3' UTR.


Asunto(s)
Tipificación del Cuerpo , Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 3' , Animales , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ovario/metabolismo , Unión Proteica
14.
Cell Mol Life Sci ; 78(14): 5587-5604, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34100981

RESUMEN

To clarify whether differential compartmentalization of Survivin impacts temozolomide (TMZ)-triggered end points, we established a well-defined glioblastoma cell model in vitro (LN229 and A172) and in vivo, distinguishing between its nuclear and cytoplasmic localization. Expression of nuclear export sequence (NES)-mutated Survivin (SurvNESmut-GFP) led to impaired colony formation upon TMZ. This was not due to enhanced cell death but rather due to increased senescence. Nuclear-trapped Survivin reduced homologous recombination (HR)-mediated double-strand break (DSB) repair, as evaluated by γH2AX foci formation and qPCR-based HR assay leading to pronounced induction of chromosome aberrations. Opposite, clones, expressing free-shuttling cytoplasmic but not nuclear-trapped Survivin, could repair TMZ-induced DSBs and evaded senescence. Mass spectrometry-based interactomics revealed, however, no direct interaction of Survivin with any of the repair factors. The improved TMZ-triggered HR activity in Surv-GFP was associated with enhanced mRNA and stabilized RAD51 protein expression, opposite to diminished RAD51 expression in SurvNESmut cells. Notably, cytoplasmic Survivin could significantly compensate for the viability under RAD51 knockdown. Differential Survivin localization also resulted in distinctive TMZ-triggered transcriptional pathways, associated with senescence and chromosome instability as shown by global transcriptome analysis. Orthotopic LN229 xenografts, expressing SurvNESmut exhibited diminished growth and increased DNA damage upon TMZ, as manifested by PCNA and γH2AX foci expression, respectively, in brain tissue sections. Consequently, those mice lived longer. Although tumors of high-grade glioma patients expressed majorly nuclear Survivin, they exhibited rarely NES mutations which did not correlate with survival. Based on our in vitro and xenograft data, Survivin nuclear trapping would facilitate glioma response to TMZ.


Asunto(s)
Núcleo Celular/metabolismo , Senescencia Celular , Resistencia a Antineoplásicos , Glioblastoma/tratamiento farmacológico , Recombinación Homóloga , Survivin/metabolismo , Temozolomida/farmacología , Animales , Antineoplásicos Alquilantes/farmacología , Apoptosis , Biomarcadores de Tumor , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Núcleo Celular/genética , Proliferación Celular , Daño del ADN , Reparación del ADN , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Ratones , Ratones Desnudos , Survivin/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Proteomics ; 21(10): e2000283, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33768672

RESUMEN

Kinase fusions are considered oncogenic drivers in numerous types of cancer. In lung adenocarcinoma 5-10% of patients harbor kinase fusions. The most frequently detected kinase fusion involves the Anaplastic Lymphoma Kinase (ALK) and Echinoderm Microtubule-associated protein-Like 4 (EML4). In addition, oncogenic kinase fusions involving the tyrosine kinases RET and ROS1 are found in smaller subsets of patients. In this study, we employed quantitative mass spectrometry-based phosphoproteomics to define the cellular tyrosine phosphorylation patterns induced by different oncogenic kinase fusions identified in patients with lung adenocarcinoma. We show that exogenous expression of the kinase fusions in HEK 293T cells leads to widespread tyrosine phosphorylation. Direct comparison of different kinase fusions demonstrates that the kinase part and not the fusion partner primarily defines the phosphorylation pattern. The tyrosine phosphorylation patterns differed between ALK, ROS1, and RET fusions, suggesting that oncogenic signaling induced by these kinases involves the modulation of different cellular processes.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/genética , Humanos , Neoplasias Pulmonares/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Fosforilación , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteómica , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , Tirosina
16.
Blood ; 133(21): 2305-2319, 2019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-30814062

RESUMEN

Neural cell adhesion molecule 1 (NCAM1; CD56) is expressed in up to 20% of acute myeloid leukemia (AML) patients. NCAM1 is widely used as a marker of minimal residual disease; however, the biological function of NCAM1 in AML remains elusive. In this study, we investigated the impact of NCAM1 expression on leukemogenesis, drug resistance, and its role as a biomarker to guide therapy. Beside t(8;21) leukemia, NCAM1 expression was found in most molecular AML subgroups at highly heterogeneous expression levels. Using complementary genetic strategies, we demonstrated an essential role of NCAM1 in the regulation of cell survival and stress resistance. Perturbation of NCAM1 induced cell death or differentiation and sensitized leukemic blasts toward genotoxic agents in vitro and in vivo. Furthermore, Ncam1 was highly expressed in leukemic progenitor cells in a murine leukemia model, and genetic depletion of Ncam1 prolonged disease latency and significantly reduced leukemia-initiating cells upon serial transplantation. To further analyze the mechanism of the NCAM1-associated phenotype, we performed phosphoproteomics and transcriptomics in different AML cell lines. NCAM1 expression strongly associated with constitutive activation of the MAPK-signaling pathway, regulation of apoptosis, or glycolysis. Pharmacological inhibition of MEK1/2 specifically inhibited proliferation and sensitized NCAM1+ AML cells to chemotherapy. In summary, our data demonstrate that aberrant expression of NCAM1 is involved in the maintenance of leukemic stem cells and confers stress resistance, likely due to activation of the MAPK pathway. Targeting MEK1/2 sensitizes AML blasts to genotoxic agents, indicating a role for NCAM1 as a biomarker to guide AML treatment.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Crisis Blástica/metabolismo , Antígeno CD56/metabolismo , Resistencia a Antineoplásicos , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/metabolismo , Animales , Apoptosis/genética , Biomarcadores de Tumor/genética , Crisis Blástica/genética , Crisis Blástica/patología , Crisis Blástica/terapia , Antígeno CD56/genética , Femenino , Glucólisis/genética , Células HL-60 , Humanos , Células K562 , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/terapia , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Proteínas de Neoplasias/genética
17.
Mol Cell ; 51(2): 265-72, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23830618

RESUMEN

Lysine acetylation is a frequently occurring posttranslational modification in bacteria; however, little is known about its origin and regulation. Using the model bacterium Escherichia coli (E. coli), we found that most acetylation occurred at a low level and accumulated in growth-arrested cells in a manner that depended on the formation of acetyl-phosphate (AcP) through glycolysis. Mutant cells unable to produce AcP had significantly reduced acetylation levels, while mutant cells unable to convert AcP to acetate had significantly elevated acetylation levels. We showed that AcP can chemically acetylate lysine residues in vitro and that AcP levels are correlated with acetylation levels in vivo, suggesting that AcP may acetylate proteins nonenzymatically in cells. These results uncover a critical role for AcP in bacterial acetylation and indicate that most acetylation in E. coli occurs at a low level and is dynamically affected by metabolism and cell proliferation in a global, uniform manner.


Asunto(s)
Acetatos/metabolismo , Proliferación Celular , Escherichia coli/metabolismo , Lisina/química , Organofosfatos/metabolismo , Acetilación , Células Cultivadas , Cromatografía Liquida , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Glucólisis , Lisina/metabolismo , Mutación/genética , Procesamiento Proteico-Postraduccional , Espectrometría de Masas en Tándem
18.
EMBO J ; 35(17): 1868-84, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27307491

RESUMEN

TNF-α is a key regulator of innate immune and proinflammatory responses. However, the composition of the TNF-α receptor-associated signaling complexes (TNF-RSC) and the architecture of the downstream signaling networks are incompletely understood. We employed quantitative mass spectrometry to demonstrate that TNF-α stimulation induces widespread protein phosphorylation and that the scope of phosphorylation expands in a temporal manner. TNF-α stimulation also induces rapid ubiquitylation of components of the TNF-RSC Temporal analysis of the TNF-RSC composition identified SPATA2 as a novel component of the TNF-RSC The predicted PUB domain in the N-terminus of SPATA2 interacts with the USP domain of CYLD, whereas the C-terminus of SPATA2 interacts with HOIP SPATA2 is required for recruitment of CYLD to the TNF-RSC Downregulation of SPATA2 augments transcriptional activation of NF-κB and inhibits TNF-α-induced necroptosis, pointing to an important function of SPATA2 in modulating the outcomes of TNF-α signaling. Taken together, our study draws a detailed map of TNF-α signaling, identifies SPATA2 as a novel component of TNF-α signaling, and provides a rich resource for further functional investigations.


Asunto(s)
Proteínas/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Línea Celular , Enzima Desubiquitinante CYLD , Humanos , Espectrometría de Masas , Fosforilación , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteoma/análisis , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
19.
EMBO Rep ; 19(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29467282

RESUMEN

Valosin-containing protein (VCP) is an evolutionarily conserved ubiquitin-dependent ATPase that mediates the degradation of proteins through the ubiquitin-proteasome pathway. Despite the central role of VCP in the regulation of protein homeostasis, identity and nature of its cellular substrates remain poorly defined. Here, we combined chemical inhibition of VCP and quantitative ubiquitin remnant profiling to assess the effect of VCP inhibition on the ubiquitin-modified proteome and to probe the substrate spectrum of VCP in human cells. We demonstrate that inhibition of VCP perturbs cellular ubiquitylation and increases ubiquitylation of a different subset of proteins compared to proteasome inhibition. VCP inhibition globally upregulates K6-linked ubiquitylation that is dependent on the HECT-type ubiquitin E3 ligase HUWE1. We report ~450 putative VCP substrates, many of which function in nuclear processes, including gene expression, DNA repair and cell cycle. Moreover, we identify that VCP regulates the level and activity of the transcription factor c-Myc.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína que Contiene Valosina/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Humanos , Modelos Biológicos , Unión Proteica , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Transporte de Proteínas , Proteolisis , Proteoma , Proteómica/métodos , Ubiquitinación
20.
Mol Cell ; 46(2): 212-25, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22424773

RESUMEN

The regulatory networks of the DNA damage response (DDR) encompass many proteins and posttranslational modifications. Here, we use mass spectrometry-based proteomics to analyze the systems-wide response to DNA damage by parallel quantification of the DDR-regulated phosphoproteome, acetylome, and proteome. We show that phosphorylation-dependent signaling networks are regulated more strongly compared to acetylation. Among the phosphorylated proteins identified are many putative substrates of DNA-PK, ATM, and ATR kinases, but a majority of phosphorylated proteins do not share the ATM/ATR/DNA-PK target consensus motif, suggesting an important role of downstream kinases in amplifying DDR signals. We show that the splicing-regulator phosphatase PPM1G is recruited to sites of DNA damage, while the splicing-associated protein THRAP3 is excluded from these regions. Moreover, THRAP3 depletion causes cellular hypersensitivity to DNA-damaging agents. Collectively, these data broaden our knowledge of DNA damage signaling networks and highlight an important link between RNA metabolism and DNA repair.


Asunto(s)
Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/fisiología , Factores de Transcripción/fisiología , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Fosfoproteínas Fosfatasas/fisiología , Fosforilación , Proteína Fosfatasa 2C , Proteómica , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA