Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Brain ; 146(8): 3206-3220, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36732296

RESUMEN

Alzheimer's disease and related disorders feature neurofibrillary tangles and other neuropathological lesions composed of detergent-insoluble tau protein. In recent structural biology studies of tau proteinopathy, aggregated tau forms a distinct set of conformational variants specific to the different types of tauopathy disorders. However, the constituents driving the formation of distinct pathological tau conformations on pathway to tau-mediated neurodegeneration remain unknown. Previous work demonstrated RNA can serve as a driver of tau aggregation, and RNA associates with tau containing lesions, but tools for evaluating tau/RNA interactions remain limited. Here, we employed molecular interaction studies to measure the impact of tau/RNA binding on tau microtubule binding and aggregation. To investigate the importance of tau/RNA complexes (TRCs) in neurodegenerative disease, we raised a monoclonal antibody (TRC35) against aggregated tau/RNA complexes. We showed that native tau binds RNA with high affinity but low specificity, and tau binding to RNA competes with tau-mediated microtubule assembly functions. Tau/RNA interaction in vitro promotes the formation of higher molecular weight tau/RNA complexes, which represent an oligomeric tau species. Coexpression of tau and poly(A)45 RNA transgenes in Caenorhabditis elegans exacerbates tau-related phenotypes including neuronal dysfunction and pathological tau accumulation. TRC35 exhibits specificity for Alzheimer's disease-derived detergent-insoluble tau relative to soluble recombinant tau. Immunostaining with TRC35 labels a wide variety of pathological tau lesions in animal models of tauopathy, which are reduced in mice lacking the RNA binding protein MSUT2. TRC-positive lesions are evident in many human tauopathies including Alzheimer's disease, progressive supranuclear palsy, corticobasal degeneration and Pick's disease. We also identified ocular pharyngeal muscular dystrophy as a novel tauopathy disorder, where loss of function in the poly(A) RNA binding protein (PABPN1) causes accumulation of pathological tau in tissue from post-mortem human brain. Tau/RNA binding drives tau conformational change and aggregation inhibiting tau-mediated microtubule assembly. Our findings implicate cellular tau/RNA interactions as modulators of both normal tau function and pathological tau toxicity in tauopathy disorders and suggest feasibility for novel therapeutic approaches targeting TRCs.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Tauopatías , Humanos , Ratones , Animales , Proteínas tau/metabolismo , Enfermedad de Alzheimer/patología , ARN/metabolismo , Enfermedades Neurodegenerativas/patología , Detergentes/metabolismo , Polimerizacion , Tauopatías/patología , Encéfalo/patología , ARN Mensajero/metabolismo , Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Proteína I de Unión a Poli(A)/metabolismo
2.
Hum Mol Genet ; 29(3): 495-505, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31943011

RESUMEN

Aggregates of Aß peptide and the microtubule-associated protein tau are key molecular hallmarks of Alzheimer's disease (AD). However, the interaction between these two pathologies and the mechanisms underlying disease progression have remained unclear. Numerous failed clinical trials suggest the necessity for greater mechanistic understanding in order to refine strategies for therapeutic discovery and development. To this end, we have generated a transgenic Caenorhabditis elegans model expressing both human Aß1-42 peptide and human tau protein pan-neuronally. We observed exacerbated behavioral dysfunction and age-dependent neurodegenerative changes in the Aß;tau transgenic animals. Further, these changes occurred in the Aß;tau transgenic animals at greater levels than worms harboring either the Aß1-42 or tau transgene alone and interestingly without changes to the levels of tau expression, phosphorylation or aggregation. Functional changes were partially rescued with the introduction of a genetic suppressor of tau pathology. Taken together, the data herein support a synergistic role for both Aß and tau in driving neuronal dysfunction seen in AD. Additionally, we believe that the utilization of the genetically tractable C. elegans model will provide a key resource for dissecting mechanisms driving AD molecular pathology.


Asunto(s)
Péptidos beta-Amiloides/efectos adversos , Modelos Animales de Enfermedad , Enfermedades Neurodegenerativas/patología , Neuronas/patología , Proteínas tau/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Humanos , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Fosforilación , Proteínas tau/genética
3.
J Neurochem ; 137(6): 939-54, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26953146

RESUMEN

Despite extensive structure-function analyses, the molecular mechanisms of normal and pathological tau action remain poorly understood. How does the C-terminal microtubule-binding region regulate microtubule dynamics and bundling? In what biophysical form does tau transfer trans-synaptically from one neuron to another, promoting neurodegeneration and dementia? Previous biochemical/biophysical work led to the hypothesis that tau can dimerize via electrostatic interactions between two N-terminal 'projection domains' aligned in an anti-parallel fashion, generating a multivalent complex capable of interacting with multiple tubulin subunits. We sought to test this dimerization model directly. Native gel analyses of full-length tau and deletion constructs demonstrate that the N-terminal region leads to multiple bands, consistent with oligomerization. Ferguson analyses of native gels indicate that an N-terminal fragment (tau(45-230) ) assembles into heptamers/octamers. Ferguson analyses of denaturing gels demonstrates that tau(45-230) can dimerize even in sodium dodecyl sulfate. Atomic force microscopy reveals multiple levels of oligomerization by both full-length tau and tau(45-230) . Finally, ion mobility-mass spectrometric analyses of tau(106-144) , a small peptide containing the core of the hypothesized dimerization region, also demonstrate oligomerization. Thus, multiple independent strategies demonstrate that the N-terminal region of tau can mediate higher order oligomerization, which may have important implications for both normal and pathological tau action. The microtubule-associated protein tau is essential for neuronal development and maintenance, but is also central to Alzheimer's and related dementias. Unfortunately, the molecular mechanisms underlying normal and pathological tau action remain poorly understood. Here, we demonstrate that tau can homo-oligomerize, providing novel mechanistic models for normal tau action (promoting microtubule growth and bundling, suppressing microtubule shortening) and pathological tau action (poisoning of oligomeric complexes).


Asunto(s)
Microtúbulos/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo , Secuencia de Aminoácidos/fisiología , Animales , Dimerización , Humanos , Espectrometría de Masas , Microscopía de Fuerza Atómica , Modelos Biológicos , Péptidos/química , Unión Proteica , Proteínas tau/genética
4.
Methods Cell Biol ; 141: 3-26, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28882309

RESUMEN

In this chapter, we describe methods for the purification of both untagged and polyhistidine-tagged tau protein. These protocols utilize a bacterial expression system to produce the tau isoform of interest, followed by heat treatment and column chromatography to separate tau from impurities. These techniques yield a biochemically pure protein with which to pursue any number of questions regarding the mechanisms of tau action.


Asunto(s)
Cromatografía de Afinidad/métodos , Histidina/metabolismo , Proteínas tau/aislamiento & purificación , Proteínas tau/metabolismo , Histidina/química , Histidina/genética , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas tau/genética
5.
Neurotox Res ; 32(1): 151-162, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28391556

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of anticancer treatment with microtubule-targeted agents (MTAs). The frequency of severe CIPN, which can be dose limiting and even life threatening, varies widely among different MTAs. For example, paclitaxel induces a higher frequency of severe CIPN than does eribulin. Different MTAs also possess distinct mechanisms of microtubule-targeted action. Recently, we demonstrated that paclitaxel and eribulin differentially affect sciatic nerve axons, with paclitaxel inducing more pronounced neurodegenerative effects and eribulin inducing greater microtubule stabilizing biochemical effects. Here, we complement and extend these axonal studies by assessing the effects of paclitaxel and eribulin in the cell bodies of sciatic nerve axons, housed in the dorsal root ganglia (DRG). Importantly, the microtubule network in cell bodies is known to be significantly more dynamic than in axons. Paclitaxel induced activating transcription factor 3 expression, a marker of neuronal stress/injury. Paclitaxel also increased expression levels of acetylated tubulin and end binding protein 1, markers of microtubule stability and growth, respectively. These effects are hypothesized to be detrimental to the dynamic microtubule network within the cell bodies. In contrast, eribulin had no significant effect on any of these parameters in the cell bodies. Taken together, DRG cell bodies and their axons, two distinct neuronal cell compartments, contain functionally distinct microtubule networks that exhibit unique biochemical responses to different MTA treatments. We hypothesize that these distinct mechanistic actions may underlie the variability seen in the initiation, progression, persistence, and recovery from CIPN.


Asunto(s)
Antineoplásicos/toxicidad , Furanos/uso terapéutico , Cetonas/uso terapéutico , Paclitaxel/uso terapéutico , Neuropatía Ciática/inducido químicamente , Neuropatía Ciática/patología , Células Receptoras Sensoriales/efectos de los fármacos , Factor de Transcripción Activador 3/metabolismo , Animales , Cuerpo Celular , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/citología , Ratones , Ratones Endogámicos BALB C , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo
6.
Neurotox Res ; 29(2): 299-313, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26659667

RESUMEN

Microtubule targeting agents (MTAs) often lead to treatment limiting and life threatening side effects, including chemotherapy-induced peripheral neuropathy (CIPN). The frequency of severe CIPN varies among different MTAs. Since the microtubule binding interactions and mechanisms of action also vary among MTAs, we hypothesized that these distinct mechanisms may underlie the variability in frequency of severe CIPN. Using a two-week, maximum tolerated dose model, we morphologically and biochemically analyzed sciatic nerves from mice treated with either paclitaxel or eribulin. These drugs differ in their manner of microtubule binding and mechanisms of action and reports indicate paclitaxel also induces a higher frequency of severe CIPN than does eribulin. Morphologically, paclitaxel increased the frequency of observed signs of axon degeneration more significantly than did eribulin. Alternatively, eribulin but not paclitaxel induced occasional myelin "halo" structures. Biochemically, paclitaxel, and eribulin both induced α-tubulin expression (~1.9- and ~2.5-fold, respectively) and tubulin acetylation, a marker for microtubule stability, (~5- and ~11.7-fold, respectively). Eribulin but not paclitaxel-induced EB1 expression ~2.2-fold while paclitaxel but not eribulin mildly suppressed EB3 expression. Both EB proteins are associated with microtubule growth. Eribulin's combination of relatively mild deleterious morphological effects coupled with more potent biochemical changes promoting microtubule stability and growth in mice correlate with lower frequencies of severe CIPN in humans. We suggest that these eribulin-induced effects create a relatively stable microtubule network that compensates, in part, for the toxic anti-cancer effects of the drug, leading to fewer reported incidences of CIPN than for paclitaxel.


Asunto(s)
Furanos/toxicidad , Cetonas/toxicidad , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Paclitaxel/toxicidad , Enfermedades del Sistema Nervioso Periférico/metabolismo , Enfermedades del Sistema Nervioso Periférico/patología , Nervio Ciático/efectos de los fármacos , Nervio Ciático/patología , Acetilación/efectos de los fármacos , Animales , Axones/efectos de los fármacos , Axones/patología , Femenino , Ratones , Ratones Endogámicos BALB C , Proteínas Asociadas a Microtúbulos/metabolismo , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/patología , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Neuropatía Ciática/inducido químicamente , Neuropatía Ciática/metabolismo , Neuropatía Ciática/patología , Tubulina (Proteína)/metabolismo
7.
Cancer Res ; 75(18): 3696-8, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26081810

RESUMEN

Chemotherapy-induced peripheral neuropathy is a common, dose-limiting side effect of cancer treatment. This conference was the first of its kind to bring together a wide range of clinicians, researchers, and industry professionals to address the potential causes, preventions, and treatments for this drug toxicity. Intraepidermal nerve fiber loss, axonal degeneration, immune cell infiltration, alterations in tubulin protein expression and microtubule stability, axonal transport, and mitochondrial dysfunction were addressed as possible mechanisms. Problems with animal models of the disease were discussed, as well as the potential of patient-derived induced sensory neurons to serve as a novel in vitro model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA