Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 598(7880): 272-275, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34646001

RESUMEN

Studies1,2 have shown that the remnants of destroyed planets and debris-disk planetesimals can survive the volatile evolution of their host stars into white dwarfs3,4, but few intact planetary bodies around white dwarfs have been detected5-8. Simulations predict9-11 that planets in Jupiter-like orbits around stars of ≲8 M☉ (solar mass) avoid being destroyed by the strong tidal forces of their stellar host, but as yet, there has been no observational confirmation of such a survivor. Here we report the non-detection of a main-sequence lens star in the microlensing event MOA-2010-BLG-477Lb12 using near-infrared observations from the Keck Observatory. We determine that this system contains a 0.53 ± 0.11 M☉ white-dwarf host orbited by a 1.4 ± 0.3 Jupiter-mass planet with a separation on the plane of the sky of 2.8 ± 0.5 astronomical units, which implies a semi-major axis larger than this. This system is evidence that planets around white dwarfs can survive the giant and asymptotic giant phases of their host's evolution, and supports the prediction that more than half of white dwarfs have Jovian planetary companions13. Located at approximately 2.0 kiloparsecs towards the centre of our Galaxy, it is likely to represent an analogue to the end stages of the Sun and Jupiter in our own Solar System.

2.
Nature ; 481(7380): 167-9, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22237108

RESUMEN

Most known extrasolar planets (exoplanets) have been discovered using the radial velocity or transit methods. Both are biased towards planets that are relatively close to their parent stars, and studies find that around 17-30% (refs 4, 5) of solar-like stars host a planet. Gravitational microlensing, on the other hand, probes planets that are further away from their stars. Recently, a population of planets that are unbound or very far from their stars was discovered by microlensing. These planets are at least as numerous as the stars in the Milky Way. Here we report a statistical analysis of microlensing data (gathered in 2002-07) that reveals the fraction of bound planets 0.5-10 AU (Sun-Earth distance) from their stars. We find that 17(+6)(-9)% of stars host Jupiter-mass planets (0.3-10 M(J), where M(J) = 318 M(⊕) and M(⊕) is Earth's mass). Cool Neptunes (10-30 M(⊕)) and super-Earths (5-10 M(⊕)) are even more common: their respective abundances per star are 52(+22)(-29)% and 62(+35)(-37)%. We conclude that stars are orbited by planets as a rule, rather than the exception.

3.
Nature ; 439(7075): 437-40, 2006 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-16437108

RESUMEN

In the favoured core-accretion model of formation of planetary systems, solid planetesimals accumulate to build up planetary cores, which then accrete nebular gas if they are sufficiently massive. Around M-dwarf stars (the most common stars in our Galaxy), this model favours the formation of Earth-mass (M(o)) to Neptune-mass planets with orbital radii of 1 to 10 astronomical units (au), which is consistent with the small number of gas giant planets known to orbit M-dwarf host stars. More than 170 extrasolar planets have been discovered with a wide range of masses and orbital periods, but planets of Neptune's mass or less have not hitherto been detected at separations of more than 0.15 au from normal stars. Here we report the discovery of a 5.5(+5.5)(-2.7) M(o) planetary companion at a separation of 2.6+1.5-0.6 au from a 0.22+0.21-0.11 M(o) M-dwarf star, where M(o) refers to a solar mass. (We propose to name it OGLE-2005-BLG-390Lb, indicating a planetary mass companion to the lens star of the microlensing event.) The mass is lower than that of GJ876d (ref. 5), although the error bars overlap. Our detection suggests that such cool, sub-Neptune-mass planets may be more common than gas giant planets, as predicted by the core accretion theory.

4.
Mon Not R Astron Soc ; 457(4): 4089-4113, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32848283

RESUMEN

We present a statistical analysis of the first four seasons from a "second-generation" microlensing survey for extrasolar planets, consisting of near-continuous time coverage of 8 deg2 of the Galactic bulge by the OGLE, MOA, and Wise microlensing surveys. During this period, 224 microlensing events were observed by all three groups. Over 12% of the events showed a deviation from single-lens microlensing, and for ~1/3 of those the anomaly is likely caused by a planetary companion. For each of the 224 events we have performed numerical ray-tracing simulations to calculate the detection efficiency of possible companions as a function of companion-to-host mass ratio and separation. Accounting for the detection efficiency, we find that 55 - 22 + 34 % of microlensed stars host a snowline planet. Moreover, we find that Neptunes-mass planets are ~ 10 times more common than Jupiter-mass planets. The companion-to-host mass ratio distribution shows a deficit at q ~ 10-2, separating the distribution into two companion populations, analogous to the stellar-companion and planet populations, seen in radial-velocity surveys around solar-like stars. Our survey, however, which probes mainly lower-mass stars, suggests a minimum in the distribution in the super-Jupiter mass range, and a relatively high occurrence of brown-dwarf companions.

5.
Science ; 345(6192): 46-9, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24994642

RESUMEN

Using gravitational microlensing, we detected a cold terrestrial planet orbiting one member of a binary star system. The planet has low mass (twice Earth's) and lies projected at ~0.8 astronomical units (AU) from its host star, about the distance between Earth and the Sun. However, the planet's temperature is much lower, <60 Kelvin, because the host star is only 0.10 to 0.15 solar masses and therefore more than 400 times less luminous than the Sun. The host itself orbits a slightly more massive companion with projected separation of 10 to 15 AU. This detection is consistent with such systems being very common. Straightforward modification of current microlensing search strategies could increase sensitivity to planets in binary systems. With more detections, such binary-star planetary systems could constrain models of planet formation and evolution.

7.
Science ; 319(5865): 927-30, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18276883

RESUMEN

Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the detection of a multiple-planet system with microlensing. We identify two planets with masses of approximately 0.71 and approximately 0.27 times the mass of Jupiter and orbital separations of approximately 2.3 and approximately 4.6 astronomical units orbiting a primary star of mass approximately 0.50 solar mass at a distance of approximately 1.5 kiloparsecs. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only six confirmed microlensing planet detections suggests that solar system analogs may be common.

8.
Biochem J ; 176(3): 865-72, 1978 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-747657

RESUMEN

Changes in adipose-tissue lipoprotein lipase activity that are independent of protein synthesis were investigated in an incubation system in vitro. Under appropriate conditions at 25 degrees C a progressive increase in the enzyme activity occurs that is energy-dependent. Part of the enzyme is rapidly inactivated when the tissue is incubated with adrenaline or adrenaline plus theophylline. The mechanism of this inactivation appears to be distinct from, and to follow, the activation of the enzyme. A hypothesis is presented to account for the results in terms of an activation of the enzyme during obligatory post-translational processing and a catecholamine-regulated inactivation of the enzyme as an alternative to secretion from the adipocyte.


Asunto(s)
Tejido Adiposo/enzimología , Lipoproteína Lipasa/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/efectos de los fármacos , Animales , Cicloheximida/farmacología , Activación Enzimática/efectos de los fármacos , Epinefrina/farmacología , Técnicas In Vitro , Cinética , Lipoproteína Lipasa/antagonistas & inhibidores , Masculino , Ratas , Teofilina/farmacología , Desacopladores/farmacología
9.
Nature ; 414(6864): 617-9, 2001 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-11740553

RESUMEN

The nature of dark matter remains mysterious, with luminous material accounting for at most approximately 25 per cent of the baryons in the Universe. We accordingly undertook a survey looking for the microlensing of stars in the Large Magellanic Cloud (LMC) to determine the fraction of Galactic dark matter contained in massive compact halo objects (MACHOs). The presence of the dark matter would be revealed by gravitational lensing of the light from an LMC star as the foreground dark matter moves across the line of sight. The duration of the lensing event is the key observable parameter, but gives non-unique solutions when attempting to estimate the mass, distance and transverse velocity of the lens. The survey results to date indicate that between 8 and 50 per cent of the baryonic mass of the Galactic halo is in the form of MACHOs (ref. 3), but removing the degeneracy by identifying a lensing object would tighten the constraints on the mass in MACHOs. Here we report a direct image of a microlens, revealing it to be a nearby low-mass star in the disk of the Milky Way. This is consistent with the expected frequency of nearby stars acting as lenses, and demonstrates a direct determination of a lens mass from a microlensing event. Complete solutions such as this for halo microlensing events will probe directly the nature of the MACHOs.

10.
Science ; 305(5688): 1264-6, 2004 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-15333833

RESUMEN

Observations of the gravitational microlensing event MOA 2003-BLG-32/OGLE 2003-BLG-219 are presented, for which the peak magnification was over 500, the highest yet reported. Continuous observations around the peak enabled a sensitive search for planets orbiting the lens star. No planets were detected. Planets 1.3 times heavier than Earth were excluded from more than 50% of the projected annular region from approximately 2.3 to 3.6 astronomical units surrounding the lens star, Uranus-mass planets were excluded from 0.9 to 8.7 astronomical units, and planets 1.3 times heavier than Saturn were excluded from 0.2 to 60 astronomical units. These are the largest regions of sensitivity yet achieved in searches for extrasolar planets orbiting any star.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA