Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 30(37): e202400432, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38662614

RESUMEN

In the design of dynamic supramolecular systems used in molecular machines, it is important to understand the binding preferences between the macrocycle and stations along the thread. Here, we apply 1H NMR spectroscopy to investigate the relative stabilities of a series of linear alkylammonium templated pseudorotaxanes with the general formula [H2NRR'][Cr7CoF8(O2CCH2 tBu)16] by exchanging the cation in solution. Our results show that the pseudorotaxanes are able to exchange threads via a dissociative mechanism. The position of equilibrium is dependent upon the ammonium cation and solvent used. Short chain primary ammonium cations are shown to be far less favourable macrocycle stations than secondary ammonium cations. Collision-induced dissociation mass spectrometry (CID-MS) has been used to look at disassembly of the pseudorotaxanes in a solvent-free environment and stability trends compared to those in acetone-d6. The energy needed to induce 50 % of the precursor ion loss (E50) is used and shows a similar trend to the equilibria measured by NMR. The relative stabilities of these hybrid inorganic-organic pseudo-rotaxanes are different to those of host-guest compounds involving crown ethers and this may be valuable for the design of molecular machines.

2.
Inorg Chem ; 62(6): 2672-2679, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36716284

RESUMEN

Following electrospray ionization, it is common for analytes to enter the gas phase accompanied by a charge-carrying ion, and in most cases, this addition is required to enable detection in the mass spectrometer. These small charge carriers may not be influential in solution but can markedly tune the analyte properties in the gas phase. Therefore, measuring their relative influence on the target molecule can assist our understanding of the structure and stability of the analyte. As the formed adducts are usually distinguishable by their mass, differences in the behavior of the analyte resulting from these added species (e.g., structure, stability, and conformational dynamics) can be easily extracted. Here, we use ion mobility mass spectrometry, supported by density functional theory, to investigate how charge carriers (H+, Na+, K+, and Cs+) as well as water influence the disassembly, stability, and conformational landscape of the homometallic ring [Cr8F8(O2CtBu)16] and the heterometallic rotaxanes [NH2RR'][Cr7MF8(O2CtBu)16], where M = MnII, FeII, CoII, NiII, CuII, ZnII, and CdII. The results yield new insights on their disassembly mechanisms and support previously reported trends in cavity size and transition metal properties, demonstrating the potential of adduct ion studies for characterizing metallosupramolecular complexes in general.

3.
J Am Chem Soc ; 144(49): 22528-22539, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36459680

RESUMEN

Understanding the fundamental reactivity of polymetallic complexes is challenging due to the complexity of their structures with many possible bond breaking and forming processes. Here, we apply ion mobility mass spectrometry coupled with density functional theory to investigate the disassembly mechanisms and energetics of a family of heterometallic rings and rotaxanes with the general formula [NH2RR'][Cr7MF8(O2CtBu)16] with M = MnII, FeII, CoII, NiII, CuII, ZnII, CdII. Our results show that their stability can be tuned both by altering the d-metal composition in the macrocycle and by the end groups of the secondary ammonium cation [NH2RR']+. Ion mobility probes the conformational landscape of the disassembly process from intact complex to structurally distinct isobaric fragments, providing unique insights to how a given divalent metal tunes the structural dynamics.


Asunto(s)
Rotaxanos , Metales/química , Conformación Molecular , Cationes Bivalentes
4.
Chem Asian J ; : e202400641, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896504

RESUMEN

Mono- and bis-salen functionalised [2]rotaxanes have been synthesised from the esterification of [2]rotaxanes containing phenol-terminated threads (salen = N,N'-bis(salicylidene)ethylenediamine). The [2]rotaxanes have general formula [RH][Cr7NiF8(O2CtBu)16], where [RH]+ is a thread with a central secondary ammonium site that templates a [Cr7NiF8(O2CtBu)16]- ring. The threads are terminated at one or both ends by carboxylic acid functionalised salen groups. The {M(salen)} groups can be free-base [M = (H+)2] or metallated [M = Cu2+, Ni2+, (VO)2+]. The [2]rotaxanes have been characterised by single crystal XRD and solid- and solution-state EPR spectroscopy. Where two paramagnetic M ions are involved [M = Cu2+ and/or (VO)2+] the [2]rotaxanes contain three electron spin S = ½ centres, since the {Cr7Ni} ring has an S = ½ ground state which is well isolated at low temperatures. These three-spin [2]rotaxanes have been characterised in solution by pulsed dipolar EPR spectroscopies (DEER, also known as PELDOR, and RIDME). The M···M and M···{Cr7Ni} interactions measured are consistent with dipolar interactions and also with the distances from single crystal XRD.

5.
Inorg Chem Front ; 10(23): 6945-6952, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38021441

RESUMEN

Here we report the synthesis and structural characterization of four [7]rotaxanes formed by coordinating hybrid inorganic-organic [2]rotaxanes to a central {Ni12} core. X-ray single crystal diffraction demonstrate that [7]rotaxanes are formed, with a range of conformations in the crystal. Small angle X-ray scattering supported by molecular dynamic simulations demonstrates that the large molecules are stable in solution and also show that the conformers present in solution are not those found in the crystal. Pulsed EPR spectroscopy show that phase memory times for the {Cr7Ni} rings, which have been proposed as qubits, are reduced but not dramatically by the presence of the {Ni12} cage.

6.
Chem Sci ; 12(26): 9104-9113, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34276940

RESUMEN

The implementation of a quantum computer requires both to protect information from environmental noise and to implement quantum operations efficiently. Achieving this by a fully fault-tolerant platform, in which quantum gates are implemented within quantum-error corrected units, poses stringent requirements on the coherence and control of such hardware. A more feasible architecture could consist of connected memories, that support error-correction by enhancing coherence, and processing units, that ensure fast manipulations. We present here a supramolecular {Cr7Ni}-Cu system which could form the elementary unit of this platform, where the electronic spin 1/2 of {Cr7Ni} provides the processor and the naturally isolated nuclear spin 3/2 of the Cu ion is used to encode a logical unit with embedded quantum error-correction. We demonstrate by realistic simulations that microwave pulses allow us to rapidly implement gates on the processor and to swap information between the processor and the quantum memory. By combining the storage into the Cu nuclear spin with quantum error correction, information can be protected for times much longer than the processor coherence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA