Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mar Drugs ; 19(7)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209313

RESUMEN

Pacific oysters (Crassostrea gigas) may bio-accumulate high levels of paralytic shellfish toxins (PST) during harmful algal blooms of the genus Alexandrium. These blooms regularly occur in coastal waters, affecting oyster health and marketability. The aim of our study was to analyse the PST-sensitivity of nerves of Pacific oysters in relation with toxin bio-accumulation. The results show that C. gigas nerves have micromolar range of saxitoxin (STX) sensitivity, thus providing intermediate STX sensitivity compared to other bivalve species. However, theses nerves were much less sensitive to tetrodotoxin. The STX-sensitivity of compound nerve action potential (CNAP) recorded from oysters experimentally fed with Alexandrium minutum (toxic-alga-exposed oysters), or Tisochrysis lutea, a non-toxic microalga (control oysters), revealed that oysters could be separated into STX-resistant and STX-sensitive categories, regardless of the diet. Moreover, the percentage of toxin-sensitive nerves was lower, and the STX concentration necessary to inhibit 50% of CNAP higher, in recently toxic-alga-exposed oysters than in control bivalves. However, no obvious correlation was observed between nerve sensitivity to STX and the STX content in oyster digestive glands. None of the nerves isolated from wild and farmed oysters was detected to be sensitive to tetrodotoxin. In conclusion, this study highlights the good potential of cerebrovisceral nerves of Pacific oysters for electrophysiological and pharmacological studies. In addition, this study shows, for the first time, that C. gigas nerves have micromolar range of STX sensitivity. The STX sensitivity decreases, at least temporary, upon recent oyster exposure to dinoflagellates producing PST under natural, but not experimental environment.


Asunto(s)
Crassostrea , Saxitoxina/toxicidad , Tetrodotoxina/toxicidad , Animales , Organismos Acuáticos , Fenómenos Electrofisiológicos , Océano Pacífico
2.
J Neuroinflammation ; 17(1): 266, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32894170

RESUMEN

BACKGROUND: Experimental autoimmune encephalomyelitis (EAE) is the most commonly used and clinically relevant murine model for human multiple sclerosis (MS), a demyelinating autoimmune disease characterized by mononuclear cell infiltration into the central nervous system (CNS). The aim of the present study was to appraise the alterations, poorly documented in the literature, which may occur at the peripheral nervous system (PNS) level. METHODS: To this purpose, a multiple evaluation of peripheral nerve excitability was undertaken, by means of a minimally invasive electrophysiological method, in EAE mice immunized with the myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide, an experimental model for MS that reproduces, in animals, the anatomical and behavioral alterations observed in humans with MS, including CNS inflammation, demyelination of neurons, and motor abnormalities. Additionally, the myelin sheath thickness of mouse sciatic nerves was evaluated using transmission electronic microscopy. RESULTS: As expected, the mean clinical score of mice, daily determined to describe the symptoms associated to the EAE progression, increased within about 18 days after immunization for EAE mice while it remained null for all control animals. The multiple evaluation of peripheral nerve excitability, performed in vivo 2 and 4 weeks after immunization, reveals that the main modifications of EAE mice, compared to control animals, are a decrease of the maximal compound action potential (CAP) amplitude and of the stimulation intensity necessary to generate a CAP with a 50% maximum amplitude. In addition, and in contrast to control mice, at least 2 CAPs were recorded following a single stimulation in EAE animals, reflecting various populations of sensory and motor nerve fibers having different CAP conduction speeds, as expected if a demyelinating process occurred in the PNS of these animals. In contrast, single CAPs were always recorded from the sensory and motor nerve fibers of control mice having more homogeneous CAP conduction speeds. Finally, the myelin sheath thickness of sciatic nerves of EAE mice was decreased 4 weeks after immunization when compared to control animals. CONCLUSIONS: In conclusion, the loss of immunological self-tolerance to MOG in EAE mice or in MS patients may not be only attributed to the restricted expression of this antigen in the immunologically privileged environment of the CNS but also of the PNS.


Asunto(s)
Potenciales de Acción/fisiología , Encefalomielitis Autoinmune Experimental/fisiopatología , Conducción Nerviosa/fisiología , Nervios Periféricos/fisiopatología , Animales , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Ratones , Músculo Esquelético/inmunología , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Vaina de Mielina/inmunología , Vaina de Mielina/patología , Glicoproteína Mielina-Oligodendrócito/inmunología , Fragmentos de Péptidos/inmunología , Nervios Periféricos/inmunología , Nervios Periféricos/patología
3.
Mar Drugs ; 17(5)2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-31137661

RESUMEN

Pinnatoxins (PnTXs) A-H constitute an emerging family belonging to the cyclic imine group of phycotoxins. Interest has been focused on these fast-acting and highly-potent toxins because they are widely found in contaminated shellfish. Despite their highly complex molecular structure, PnTXs have been chemically synthetized and demonstrated to act on various nicotinic acetylcholine receptor (nAChR) subtypes. In the present work, PnTX-A, PnTX-G and analogue, obtained by chemical synthesis with a high degree of purity (>98%), have been studied in vivo and in vitro on adult mouse and isolated nerve-muscle preparations expressing the mature muscle-type (α1)2ß1δε nAChR. The results show that PnTX-A and G acted on the neuromuscular system of anesthetized mice and blocked the compound muscle action potential (CMAP) in a dose- and time-dependent manner, using a minimally invasive electrophysiological method. The CMAP block produced by both toxins in vivo was reversible within 6-8 h. PnTX-A and G, applied to isolated extensor digitorum longus nerve-muscle preparations, blocked reversibly isometric twitches evoked by nerve stimulation. The action of PnTX-A was reversed by 3,4-diaminopyridine. Both toxins exerted no direct action on muscle fibers, as revealed by direct muscle stimulation. PnTX-A and G blocked synaptic transmission at mouse neuromuscular junctions and PnTX-A amino ketone analogue (containing an open form of the imine ring) had no effect on neuromuscular transmission. These results indicate the importance of the cyclic imine for interacting with the adult mammalian muscle-type nAChR. Modeling and docking studies revealed molecular determinants responsible for the interaction of PnTXs with the muscle-type nAChR.


Asunto(s)
Alcaloides/farmacología , Músculo Esquelético/efectos de los fármacos , Compuestos de Espiro/farmacología , Esteroles/farmacología , Transmisión Sináptica/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Alcaloides/síntesis química , Animales , Femenino , Masculino , Ratones , Bloqueantes Neuromusculares/síntesis química , Bloqueantes Neuromusculares/farmacología , Antagonistas Nicotínicos/síntesis química , Antagonistas Nicotínicos/farmacología , Unión Proteica/efectos de los fármacos , Receptores Nicotínicos/metabolismo , Compuestos de Espiro/síntesis química , Esteroles/síntesis química
4.
Proc Natl Acad Sci U S A ; 113(3): 746-50, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26733679

RESUMEN

The distribution and function of sympathetic innervation in skeletal muscle have largely remained elusive. Here we demonstrate that sympathetic neurons make close contact with neuromuscular junctions and form a network in skeletal muscle that may functionally couple different targets including blood vessels, motor neurons, and muscle fibers. Direct stimulation of sympathetic neurons led to activation of muscle postsynaptic ß2-adrenoreceptor (ADRB2), cAMP production, and import of the transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α (PPARGC1A) into myonuclei. Electrophysiological and morphological deficits of neuromuscular junctions upon sympathectomy and in myasthenic mice were rescued by sympathicomimetic treatment. In conclusion, this study identifies the neuromuscular junction as a target of the sympathetic nervous system and shows that sympathetic input is crucial for synapse maintenance and function.


Asunto(s)
Salud , Homeostasis , Enfermedades del Sistema Nervioso/patología , Unión Neuromuscular/patología , Sistema Nervioso Simpático/patología , Transporte Activo de Núcleo Celular , Animales , Técnicas Biosensibles , Núcleo Celular/metabolismo , AMP Cíclico/metabolismo , Femenino , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Músculo Esquelético/inervación , Unión Neuromuscular/metabolismo , Neuronas/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fenotipo , Transducción de Señal , Simpatectomía , Sistema Nervioso Simpático/metabolismo , Factores de Transcripción/metabolismo
5.
J Neurochem ; 142 Suppl 2: 41-51, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28326551

RESUMEN

We present an overview of the toxicological profile of the fast-acting, lipophilic macrocyclic imine toxins, an emerging family of organic compounds associated with algal blooms, shellfish contamination and neurotoxicity. Worldwide, shellfish contamination incidents are expanding; therefore, the significance of these toxins for the shellfish food industry deserves further study. Emphasis is directed to the dinoflagellate species involved in their production, their chemical structures, and their specific mode of interaction with their principal natural molecular targets, the nicotinic acetylcholine receptors, or with the soluble acetylcholine-binding protein, used as a surrogate receptor model. The dinoflagellates Karenia selliformis and Alexandrium ostenfeldii / A. peruvianum have been implicated in the biosynthesis of gymnodimines and spirolides, while Vulcanodinium rugosum is the producer of pinnatoxins and portimine. The cyclic imine toxins are characterized by a macrocyclic skeleton comprising 14-27 carbon atoms, flanked by two conserved moieties, the cyclic imine and the spiroketal ring system. These phycotoxins generally display high affinity and broad specificity for the muscle type and neuronal nicotinic acetylcholine receptors, a feature consistent with their binding site at the receptor subunit interfaces, composed of residues highly conserved among all nAChRs, and explaining the diverse toxicity among animal species. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.


Asunto(s)
Acetilcolina/antagonistas & inhibidores , Dinoflagelados/efectos de los fármacos , Iminas/toxicidad , Antagonistas Nicotínicos/farmacología , Receptores Nicotínicos/metabolismo , Toxinas Biológicas/farmacología , Animales , Dinoflagelados/aislamiento & purificación , Humanos , Receptores Nicotínicos/efectos de los fármacos , Toxinas Biológicas/metabolismo
6.
J Physiol ; 594(7): 1931-52, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26915343

RESUMEN

KEY POINTS: The real impact of physical exercise parameters, i.e. intensity, type of contraction and solicited energetic metabolism, on neuroprotection in the specific context of neurodegeneration remains poorly explored. In this study behavioural, biochemical and cellular analyses were conducted to compare the effects of two different long-term exercise protocols, high intensity swimming and low intensity running, on motor units of a type 3 spinal muscular atrophy (SMA)-like mouse model. Our data revealed a preferential SMA-induced death of intermediate and fast motor neurons which was limited by the swimming protocol only, suggesting a close relationship between neuron-specific protection and their activation levels by specific exercise. The exercise-induced neuroprotection was independent of SMN protein expression and associated with specific metabolic and behavioural adaptations with notably a swimming-induced reduction of muscle fatigability. Our results provide new insight into the motor units' adaptations to different physical exercise parameters and will contribute to the design of new active physiotherapy protocols for patient care. ABSTRACT: Spinal muscular atrophy (SMA) is a group of autosomal recessive neurodegenerative diseases differing in their clinical outcome, characterized by the specific loss of spinal motor neurons, caused by insufficient level of expression of the protein survival of motor neuron (SMN). No cure is at present available for SMA. While physical exercise might represent a promising approach for alleviating SMA symptoms, the lack of data dealing with the effects of different exercise types on diseased motor units still precludes the use of active physiotherapy in SMA patients. In the present study, we have evaluated the efficiency of two long-term physical exercise paradigms, based on either high intensity swimming or low intensity running, in alleviating SMA symptoms in a mild type 3 SMA-like mouse model. We found that 10 months' physical training induced significant benefits in terms of resistance to muscle damage, energetic metabolism, muscle fatigue and motor behaviour. Both exercise types significantly enhanced motor neuron survival, independently of SMN expression, leading to the maintenance of neuromuscular junctions and skeletal muscle phenotypes, particularly in the soleus, plantaris and tibialis of trained mice. Most importantly, both exercises significantly improved neuromuscular excitability properties. Further, all these training-induced benefits were quantitatively and qualitatively related to the specific characteristics of each exercise, suggesting that the related neuroprotection is strongly dependent on the specific activation of some motor neuron subpopulations. Taken together, the present data show significant long-term exercise benefits in type 3 SMA-like mice providing important clues for designing rehabilitation programmes in patients.


Asunto(s)
Atrofia Muscular Espinal/terapia , Condicionamiento Físico Animal/métodos , Esfuerzo Físico , Animales , Potenciales Evocados Motores , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Atrofia Muscular Espinal/fisiopatología , Atrofia Muscular Espinal/prevención & control , Carrera , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Natación
7.
Nat Prod Rep ; 32(3): 411-35, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25338021

RESUMEN

From a small group of exotic compounds isolated only two decades ago, Cyclic Imine (CI) toxins have become a major class of marine toxins with global distribution. Their distinct chemical structure, biological mechanism of action, and intricate chemistry ensures that CI toxins will continue to be the subject of fascinating fundamental studies in the broad fields of chemistry, chemical biology, and toxicology. The worldwide occurrence of potent CI toxins in marine environments, their accumulation in shellfish, and chemical stability are important considerations in assessing risk factors for human health. This review article aims to provide an account of chemistry, biology, and toxicology of CI toxins from their discovery to the present day.


Asunto(s)
Productos Biológicos/síntesis química , Productos Biológicos/farmacología , Iminas/química , Toxinas Marinas/síntesis química , Toxinas Marinas/farmacología , Productos Biológicos/química , Ambiente , Humanos , Iminas/síntesis química , Iminas/farmacología , Toxinas Marinas/química , Estructura Molecular , Mariscos
8.
FASEB J ; 28(6): 2603-19, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24604079

RESUMEN

A new approach to treating Duchenne muscular dystrophy was investigated by using the ester or amide covalent association of arginine [nitric oxide (NO) pathway] and butyrate [histone deacetylase (HDAC) inhibition] in mdx mice and patient myotubes. Two prodrugs were synthesized, and the beneficial effects on dystrophic phenotype were studied. Nerve excitability abnormalities detected in saline-treated mice were almost totally rescued in animals treated at low doses (50-100 mg/kg/d). Force and fatigue resistance were improved ≈60% and 3.5-fold, respectively, and the percentage of necrosis in heart sections was reduced ≈90% in the treated mice. A decrease of >50% in serum creatine kinase indicated an overall improvement in the muscles. Restoration of membrane integrity was studied directly by measuring the reduction (≈74%) of Evans blue incorporation in the limb muscles of the treated animals, the increase in utrophin level, and the normalization of lipid composition of the heart. In cultures of human myotubes (primary cells and cell line), both prodrugs and HDAC inhibitors increased by 2- to 4-fold the utrophin level, which was correctly localized at the membrane. ß-Dystroglycan and embryonic myosin protein levels were also increased. Finally, a 50% reduction in the number of spontaneous Ca(2+) spikes was observed after treatment with NO synthase substrate and HDAC inhibitors. Overall, the beneficial effects were obtained with doses 10 (in vivo) and 5 (in vitro) times lower than those of the salt formulation. Altogether, these data constitute proof of principle of the beneficial effects of low doses of arginine butyrate derivatives on muscular dystrophy, enhancing the NO pathway and inhibiting HDAC.


Asunto(s)
Arginina/análogos & derivados , Butiratos/uso terapéutico , Distrofia Muscular Animal/tratamiento farmacológico , Distrofia Muscular de Duchenne/tratamiento farmacológico , Animales , Arginina/uso terapéutico , Permeabilidad de la Membrana Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos mdx , Fibras Musculares Esqueléticas/efectos de los fármacos , Fuerza Muscular/efectos de los fármacos , Músculos/efectos de los fármacos , Músculos/fisiología , Utrofina/metabolismo
9.
Neurobiol Dis ; 71: 325-33, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25167832

RESUMEN

Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease caused by lack of dystrophin, a sub-sarcolemmal protein, which leads to dramatic muscle deterioration. We studied in mdx mice, the effects of oral administration of arginine butyrate (AB), a compound currently used for the treatment of sickle cell anemia in children, on cardiomyopathy, vertebral column deformation and electromyographic abnormalities. Monthly follow-up by echocardiography from the 8th month to the 14th month showed that AB treatment protected the mdx mice against drastic reduction (20-23%) of ejection fraction and fractional shortening, and also against the ≈20% ventricular dilatation and 25% cardiac hypertrophy observed in saline-treated mdx mice. The phenotypic improvement was corroborated by the decrease in serum CK level and by better fatigue resistance. Moreover, AB treatment protected against the progressive spinal deformity observed in mdx mice, another similarity with DMD patients. The value of the kyphosis index in AB-treated mice reached 94% of the value in C57BL/10 mice. Finally, axonal excitability parameters such as the membrane resting potential, the threshold and amplitude of the action potential, the absolute and relative refractory periods and the supernormal and subnormal periods, recorded from caudal and plantar muscles in response to excitability tests, that were modified in saline-treated mdx mice were not significantly changed, compared with wild-type animals, in AB-treated mdx mice. All of these results suggest that AB could be a potential treatment for DMD patients.


Asunto(s)
Antineoplásicos/uso terapéutico , Arginina/análogos & derivados , Axones/efectos de los fármacos , Butiratos/uso terapéutico , Cardiomiopatías/tratamiento farmacológico , Cifosis/tratamiento farmacológico , Distrofias Musculares/patología , Potenciales de Acción/efectos de los fármacos , Animales , Arginina/uso terapéutico , Cardiomiopatías/etiología , Modelos Animales de Enfermedad , Distrofina/genética , Electrocardiografía , Cifosis/etiología , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Fuerza Muscular/efectos de los fármacos , Fuerza Muscular/genética , Músculo Esquelético/fisiopatología , Distrofias Musculares/complicaciones , Distrofias Musculares/genética , Índice de Severidad de la Enfermedad , Factores de Tiempo , Tomografía Computarizada por Rayos X , Ureohidrolasas/metabolismo
10.
Mar Drugs ; 12(6): 3449-65, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24905483

RESUMEN

A novel conotoxin (conopeptide) was biochemically characterized from the crude venom of the molluscivorous marine snail, Conus bandanus (Hwass in Bruguière, 1792), collected in the south-central coast of Vietnam. The peptide was identified by screening bromotryptophan from chromatographic fractions of the crude venom. Tandem mass spectrometry techniques were used to detect and localize different post-translational modifications (PTMs) present in the BnIIID conopeptide. The sequence was confirmed by Edman's degradation and mass spectrometry revealing that the purified BnIIID conopeptide had 15 amino acid residues, with six cysteines at positions 1, 2, 7, 11, 13, and 14, and three PTMs: bromotryptophan, γ-carboxy glutamate, and amidated aspartic acid, at positions "4", "5", and "15", respectively. The BnIIID peptide was synthesized for comparison with the native peptide. Homology comparison with conopeptides having the III-cysteine framework (-CCx1x2x3x4Cx1x2x3Cx1CC-) revealed that BnIIID belongs to the M-1 family of conotoxins. This is the first report of a member of the M-superfamily containing bromotryptophan as PTM.


Asunto(s)
Conotoxinas/química , Caracol Conus/metabolismo , Péptidos/química , Animales , Péptidos/aislamiento & purificación , Procesamiento Proteico-Postraduccional , Espectrometría de Masas en Tándem , Triptófano/química , Vietnam
11.
Toxins (Basel) ; 16(3)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38535813

RESUMEN

The French Society of Toxinology (SFET), which celebrated its 30th anniversary this year, organized its 29th annual Meeting (RT29), shared by 87 participants, on 30 November-1 December 2023. The RT29 main theme, "Toxins: From the Wild to the Lab", focused on research in the field of animal venoms and animal, bacterial, fungal, or plant toxins, from their discovery in nature to their study in the laboratory. The exploration of the functions of toxins, their structures, their molecular or cellular ligands, their mode of action, and their potential therapeutic applications were emphasized during oral communications and posters through three sessions, of which each was dedicated to a secondary theme. A fourth, "miscellaneous" session allowed participants to present recent out-of-theme works. The abstracts of nine invited and 15 selected lectures, those of 24 posters, and the names of the Best Oral Communication and Best Poster awardees, are presented in this report.


Asunto(s)
Toxinas Biológicas , Animales , Humanos , Laboratorios
12.
Am J Pathol ; 180(5): 2040-55, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22449950

RESUMEN

Congenital peripheral nerve hyperexcitability (PNH) is usually associated with impaired function of voltage-gated K(+) channels (VGKCs) in neuromyotonia and demyelination in peripheral neuropathies. Schwartz-Jampel syndrome (SJS) is a form of PNH that is due to hypomorphic mutations of perlecan, the major proteoglycan of basement membranes. Schwann cell basement membrane and its cell receptors are critical for the myelination and organization of the nodes of Ranvier. We therefore studied a mouse model of SJS to determine whether a role for perlecan in these functions could account for PNH when perlecan is lacking. We revealed a role for perlecan in the longitudinal elongation and organization of myelinating Schwann cells because perlecan-deficient mice had shorter internodes, more numerous Schmidt-Lanterman incisures, and increased amounts of internodal fast VGKCs. Perlecan-deficient mice did not display demyelination events along the nerve trunk but developed dysmyelination of the preterminal segment associated with denervation processes at the neuromuscular junction. Investigating the excitability properties of the peripheral nerve suggested a persistent axonal depolarization during nerve firing in vitro, most likely due to defective K(+) homeostasis, and excluded the nerve trunk as the original site for PNH. Altogether, our data shed light on perlecan function by revealing critical roles in Schwann cell physiology and suggest that PNH in SJS originates distally from synergistic actions of peripheral nerve and neuromuscular junction changes.


Asunto(s)
Axones/fisiología , Proteoglicanos de Heparán Sulfato/fisiología , Osteocondrodisplasias/patología , Células de Schwann/fisiología , Potenciales de Acción/fisiología , Envejecimiento/fisiología , Animales , Membrana Basal/metabolismo , Enfermedades Desmielinizantes/etiología , Modelos Animales de Enfermedad , Estimulación Eléctrica/métodos , Proteoglicanos de Heparán Sulfato/deficiencia , Proteoglicanos de Heparán Sulfato/genética , Canal de Potasio Kv.1.1/biosíntesis , Ratones , Ratones Mutantes , Microscopía Electrónica , Mutación , Vaina de Mielina/fisiología , Vaina de Mielina/ultraestructura , Unión Neuromuscular/fisiopatología , Osteocondrodisplasias/complicaciones , Osteocondrodisplasias/fisiopatología , Nódulos de Ranvier/metabolismo , Nódulos de Ranvier/ultraestructura , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Células de Schwann/metabolismo , Nervio Ciático/fisiopatología , Nervio Ciático/ultraestructura
13.
Mar Drugs ; 11(12): 4724-40, 2013 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-24287956

RESUMEN

Severe toxicity was detected in mussels from Bizerte Lagoon (Northern Tunisia) using routine mouse bioassays for detecting diarrheic and paralytic toxins not associated to classical phytoplankton blooming. The atypical toxicity was characterized by rapid mouse death. The aim of the present work was to understand the basis of such toxicity. Bioassay-guided chromatographic separation and mass spectrometry were used to detect and characterize the fraction responsible for mussels' toxicity. Only a C17-sphinganine analog mycotoxin (C17-SAMT), with a molecular mass of 287.289 Da, was found in contaminated shellfish. The doses of C17-SAMT that were lethal to 50% of mice were 750 and 150 µg/kg following intraperitoneal and intracerebroventricular injections, respectively, and 900 µg/kg following oral administration. The macroscopic general aspect of cultures and the morphological characteristics of the strains isolated from mussels revealed that the toxicity episodes were associated to the presence of marine microfungi (Fusarium sp., Aspergillus sp. and Trichoderma sp.) in contaminated samples. The major in vivo effect of C17-SAMT on the mouse neuromuscular system was a dose- and time-dependent decrease of compound muscle action potential amplitude and an increased excitability threshold. In vitro, C17-SAMT caused a dose- and time-dependent block of directly- and indirectly-elicited isometric contraction of isolated mouse hemidiaphragms.


Asunto(s)
Bivalvos/química , Toxinas Marinas/química , Micotoxinas/química , Micotoxinas/toxicidad , Parálisis/inducido químicamente , Esfingosina/análogos & derivados , Animales , Bioensayo/métodos , Ratones , Mariscos , Intoxicación por Mariscos , Esfingosina/química , Esfingosina/toxicidad , Túnez
14.
Proc Natl Acad Sci U S A ; 107(13): 6076-81, 2010 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-20224036

RESUMEN

Spirolide and gymnodimine macrocyclic imine phycotoxins belong to an emerging class of chemical agents associated with marine algal blooms and shellfish toxicity. Analysis of 13-desmethyl spirolide C and gymnodimine A by binding and voltage-clamp recordings on muscle-type alpha1(2)betagammadelta and neuronal alpha3beta2 and alpha4beta2 nicotinic acetylcholine receptors reveals subnanomolar affinities, potent antagonism, and limited subtype selectivity. Their binding to acetylcholine-binding proteins (AChBP), as soluble receptor surrogates, exhibits picomolar affinities governed by diffusion-limited association and slow dissociation, accounting for apparent irreversibility. Crystal structures of the phycotoxins bound to Aplysia-AChBP ( approximately 2.4A) show toxins neatly imbedded within the nest of ar-omatic side chains contributed by loops C and F on opposing faces of the subunit interface, and which in physiological conditions accommodates acetylcholine. The structures also point to three major features: (i) the sequence-conserved loop C envelops the bound toxins to maximize surface complementarity; (ii) hydrogen bonding of the protonated imine nitrogen in the toxins with the carbonyl oxygen of loop C Trp147 tethers the toxin core centered within the pocket; and (iii) the spirolide bis-spiroacetal or gymnodimine tetrahydrofuran and their common cyclohexene-butyrolactone further anchor the toxins in apical and membrane directions, along the subunit interface. In contrast, the se-quence-variable loop F only sparingly contributes contact points to preserve the broad receptor subtype recognition unique to phycotoxins compared with other nicotinic antagonists. These data offer unique means for detecting spiroimine toxins in shellfish and identify distinctive ligands, functional determinants and binding regions for the design of new drugs able to target several receptor subtypes with high affinity.


Asunto(s)
Acetilcolina/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Toxinas Marinas/química , Toxinas Marinas/metabolismo , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Aplysia/metabolismo , Cristalografía por Rayos X , Órgano Eléctrico/metabolismo , Femenino , Compuestos Heterocíclicos con 3 Anillos/química , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Hidrocarburos Cíclicos/química , Hidrocarburos Cíclicos/metabolismo , Hidrocarburos Cíclicos/farmacología , Iminas/química , Iminas/metabolismo , Iminas/farmacología , Técnicas In Vitro , Cinética , Ligandos , Sustancias Macromoleculares , Toxinas Marinas/farmacología , Modelos Moleculares , Estructura Molecular , Antagonistas Nicotínicos/farmacología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Compuestos de Espiro/química , Compuestos de Espiro/metabolismo , Compuestos de Espiro/farmacología , Torpedo/metabolismo , Xenopus/metabolismo
15.
Toxins (Basel) ; 15(2)2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36828440

RESUMEN

The French Society of Toxinology (SFET) organized its 28th annual meeting on 28-29 November 2022 (RT28). The central theme of this meeting was "Toxins: What's up, Doc?", emphasizing the latest findings on animal, bacterial, algal, plant and fungal toxins through sessions dedicated to deep learning, toxin tracking and toxinomic advances, shared by ca. 80 participants. The abstracts of the 10 invited and 11 selected lectures and 15 posters, along with the names of the Best Oral Communication and Best Poster awardees, are presented in this report.


Asunto(s)
Micotoxinas , Toxinas Biológicas , Animales
16.
Toxins (Basel) ; 15(2)2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36828456

RESUMEN

The 27th Annual Meeting of the French Society of Toxinology (SFET, http://sfet [...].

17.
Anal Chem ; 84(23): 10445-53, 2012 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-23131021

RESUMEN

Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility.


Asunto(s)
Compuestos Heterocíclicos/análisis , Iminas/análisis , Neurotoxinas/análisis , Receptores Nicotínicos/metabolismo , Mariscos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Torpedo/metabolismo , Animales , Bioensayo , Biotina/química , Bungarotoxinas/metabolismo , Cromatografía Liquida , Compuestos Heterocíclicos/metabolismo , Iminas/metabolismo , Neurotoxinas/metabolismo , Unión Proteica
18.
Toxicol Appl Pharmacol ; 265(2): 221-8, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23046821

RESUMEN

APS12-2, a non-competitive acetylcholinesterase inhibitor, is one of the synthetic analogs of polymeric alkylpyridinium salts (poly-APS) isolated from the marine sponge Reniera sarai. In the present work the effects of APS12-2 were studied on isolated mouse phrenic nerve-hemidiaphragm muscle preparations, using twitch tension measurements and electrophysiological recordings. APS12-2 in a concentration-dependent manner blocked nerve-evoked isometric muscle contraction (IC(50)=0.74 µM), without affecting directly-elicited twitch tension up to 2.72 µM. The compound (0.007-3.40 µM) decreased the amplitude of miniature endplate potentials until a complete block by concentrations higher than 0.68 µM, without affecting their frequency. Full size endplate potentials, recorded after blocking voltage-gated muscle sodium channels, were inhibited by APS12-2 in a concentration-dependent manner (IC(50)=0.36 µM) without significant change in the resting membrane potential of the muscle fibers up to 3.40 µM. The compound also blocked acetylcholine-evoked inward currents in Xenopus oocytes in which Torpedo (α1(2)ß1γδ) muscle-type nicotinic acetylcholine receptors (nAChRs) have been incorporated (IC(50)=0.0005 µM), indicating a higher affinity of the compound for Torpedo (α1(2)ß1γδ) than for the mouse (α1(2)ß1γε) nAChR. Our data show for the first time that APS12-2 blocks neuromuscular transmission by a non-depolarizing mechanism through an action on postsynaptic nAChRs of the skeletal neuromuscular junction.


Asunto(s)
Inhibidores de la Colinesterasa/farmacología , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Compuestos de Piridinio/farmacología , Receptores Nicotínicos/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Femenino , Técnicas In Vitro , Concentración 50 Inhibidora , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Músculo Esquelético/metabolismo , Unión Neuromuscular/efectos de los fármacos , Antagonistas Nicotínicos , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Análisis de Regresión , Xenopus
19.
Toxins (Basel) ; 14(4)2022 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-35448863

RESUMEN

Gambierol inhibits voltage-gated K+ (KV) channels in various excitable and non-excitable cells. The purpose of this work was to study the effects of gambierol on single rat fetal (F19-F20) adrenomedullary cultured chromaffin cells. These excitable cells have different types of KV channels and release catecholamines. Perforated whole-cell voltage-clamp recordings revealed that gambierol (100 nM) blocked only a fraction of the total outward K+ current and slowed the kinetics of K+ current activation. The use of selective channel blockers disclosed that gambierol did not affect calcium-activated K+ (KCa) and ATP-sensitive K+ (KATP) channels. The gambierol concentration necessary to inhibit 50% of the K+ current-component sensitive to the polyether (IC50) was 5.8 nM. Simultaneous whole-cell current-clamp and single-cell amperometry recordings revealed that gambierol did not modify the membrane potential following 11s depolarizing current-steps, in both quiescent and active cells displaying repetitive firing of action potentials, and it did not increase the number of exocytotic catecholamine release events, with respect to controls. The subsequent addition of apamin and iberiotoxin, which selectively block the KCa channels, both depolarized the membrane and enhanced by 2.7 and 3.5-fold the exocytotic event frequency in quiescent and active cells, respectively. These results highlight the important modulatory role played by KCa channels in the control of exocytosis from fetal (F19-F20) adrenomedullary chromaffin cells.


Asunto(s)
Células Cromafines , Ciguatoxinas , Adenosina Trifosfato/farmacología , Animales , Calcio/farmacología , Catecolaminas/farmacología , Células Cultivadas , Ciguatoxinas/farmacología , Potasio , Ratas
20.
Toxins (Basel) ; 14(2)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35202137

RESUMEN

The French Society of Toxinology (SFET) organized its 27th annual meeting on 9-10 December 2021 as a virtual meeting (e-RT27). The central theme of this meeting was "Toxins: Mr Hyde or Dr Jekyll?", emphasizing the latest findings on plant, fungal, algal, animal and bacterial toxins during 10 lectures, 15 oral communications (shorter lectures) and 20 posters shared by ca. 80 participants. The abstracts of lectures and posters, as well as the winners of the best oral communication and poster awards, are presented in this report.


Asunto(s)
Toxinas Biológicas , Animales , Distinciones y Premios , Humanos , Sociedades Científicas , Toxinas Biológicas/farmacología , Toxinas Biológicas/uso terapéutico , Toxinas Biológicas/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA