Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nucleic Acids Res ; 46(14): 7097-7107, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29860503

RESUMEN

The two paralogous zinc finger factors CTCF and CTCFL differ in expression such that CTCF is ubiquitously expressed, whereas CTCFL is found during spermatogenesis and in some cancer types in addition to other cell types. Both factors share the highly conserved DNA binding domain and are bound to DNA sequences with an identical consensus. In contrast, both factors differ substantially in the number of bound sites in the genome. Here, we addressed the molecular features for this binding specificity. In contrast to CTCF we found CTCFL highly enriched at 'open' chromatin marked by H3K27 acetylation, H3K4 di- and trimethylation, H3K79 dimethylation and H3K9 acetylation plus the histone variant H2A.Z. CTCFL is enriched at transcriptional start sites and regions bound by transcription factors. Consequently, genes deregulated by CTCFL are highly cell specific. In addition to a chromatin-driven choice of binding sites, we determined nucleotide positions critical for DNA binding by CTCFL, but not by CTCF.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Línea Celular , ADN/química , Humanos , Células K562 , Ratones , Células 3T3 NIH
2.
J Biol Chem ; 293(8): 2711-2724, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29284678

RESUMEN

Chromatin in embryonic stem cells (ESCs) differs markedly from that in somatic cells, with ESCs exhibiting a more open chromatin configuration. Accordingly, ATP-dependent chromatin remodeling complexes are important regulators of ESC homeostasis. Depletion of the remodeler SMARCAD1, an ATPase of the SNF2 family, has been shown to affect stem cell state, but the mechanistic explanation for this effect is unknown. Here, we set out to gain further insights into the function of SMARCAD1 in mouse ESCs. We identified KRAB-associated protein 1 (KAP1) as the stoichiometric binding partner of SMARCAD1 in ESCs. We found that this interaction occurs on chromatin and that SMARCAD1 binds to different classes of KAP1 target genes, including zinc finger protein (ZFP) and imprinted genes. We also found that the RING B-box coiled-coil (RBCC) domain in KAP1 and the proximal coupling of ubiquitin conjugation to ER degradation (CUE) domain in SMARCAD1 mediate their direct interaction. Of note, retention of SMARCAD1 in the nucleus depended on KAP1 in both mouse ESCs and human somatic cells. Mutations in the CUE1 domain of SMARCAD1 perturbed the binding to KAP1 in vitro and in vivo Accordingly, an intact CUE1 domain was required for tethering this remodeler to the nucleus. Moreover, mutation of the CUE1 domain compromised SMARCAD1 binding to KAP1 target genes. Taken together, our results reveal a mechanism that localizes SMARCAD1 to genomic sites through the interaction of SMARCAD1's CUE1 motif with KAP1.


Asunto(s)
Células Madre Adultas/metabolismo , Núcleo Celular/metabolismo , ADN Helicasas/metabolismo , Regulación de la Expresión Génica , Células Madre Embrionarias de Ratones/metabolismo , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Células Madre Adultas/citología , Células Madre Adultas/enzimología , Sustitución de Aminoácidos , Animales , Línea Celular , Núcleo Celular/enzimología , Cromatina/química , Cromatina/enzimología , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/química , ADN Helicasas/genética , Eliminación de Gen , Humanos , Cinética , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/enzimología , Mutación , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteína 28 que Contiene Motivos Tripartito/antagonistas & inhibidores , Proteína 28 que Contiene Motivos Tripartito/química , Proteína 28 que Contiene Motivos Tripartito/genética
3.
Genes (Basel) ; 14(9)2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37761933

RESUMEN

In vertebrates, SMARCAD1 participates in transcriptional regulation, heterochromatin maintenance, DNA repair, and replication. The molecular basis underlying its involvement in these processes is not well understood. We identified the RNA polymerase III general transcription factor TFIIIC as an interaction partner of native SMARCAD1 in mouse and human models using endogenous co-immunoprecipitations. TFIIIC has dual functionality, acting as a general transcription factor and as a genome organizer separating chromatin domains. We found that its partnership with SMARCAD1 is conserved across different mammalian cell types, from somatic to pluripotent cells. Using purified proteins, we confirmed that their interaction is direct. A gene expression analysis suggested that SMARCAD1 is dispensable for TFIIIC function as an RNA polymerase III transcription factor in mouse ESCs. The distribution of TFIIIC and SMARCAD1 in the ESC genome is distinct, and unlike in yeast, SMARCAD1 is not enriched at active tRNA genes. Further analysis of SMARCAD1-binding partners in pluripotent and differentiated mammalian cells reveals that SMARCAD1 associates with several factors that have key regulatory roles in chromatin organization, such as cohesin, laminB, and DDX5. Together, our work suggests for the first time that the SMARCAD1 enzyme participates in genome organization in mammalian nuclei through interactions with architectural proteins.


Asunto(s)
ADN Helicasas , Factores Generales de Transcripción , Factores de Transcripción TFIII , Animales , Humanos , Ratones , Cromatina/genética , ADN Helicasas/genética , Mamíferos , ARN Polimerasa III , Factores de Transcripción TFIII/genética
4.
Nat Commun ; 10(1): 1335, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30902974

RESUMEN

Endogenous retroviruses (ERVs) can confer benefits to their host but present a threat to genome integrity if not regulated correctly. Here we identify the SWI/SNF-like remodeler SMARCAD1 as a key factor in the control of ERVs in embryonic stem cells. SMARCAD1 is enriched at ERV subfamilies class I and II, particularly at active intracisternal A-type particles (IAPs), where it preserves repressive histone methylation marks. Depletion of SMARCAD1 results in de-repression of IAPs and adjacent genes. Recruitment of SMARCAD1 to ERVs is dependent on KAP1, a central component of the silencing machinery. SMARCAD1 and KAP1 occupancy at ERVs is co-dependent and requires the ATPase function of SMARCAD1. Our findings uncover a role for the enzymatic activity of SMARCAD1 in cooperating with KAP1 to silence ERVs. This reveals ATP-dependent chromatin remodeling as an integral step in retrotransposon regulation in stem cells and advances our understanding of the mechanisms driving heterochromatin establishment.


Asunto(s)
Retrovirus Endógenos/metabolismo , Silenciador del Gen , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Nucleares/metabolismo , Animales , ADN Helicasas , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Ratones , Modelos Biológicos , Unión Proteica
5.
Epigenetics Chromatin ; 5(1): 8, 2012 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-22709888

RESUMEN

BACKGROUND: CTCF is a highly conserved and essential zinc finger protein expressed in virtually all cell types. In conjunction with cohesin, it organizes chromatin into loops, thereby regulating gene expression and epigenetic events. The function of CTCFL or BORIS, the testis-specific paralog of CTCF, is less clear. RESULTS: Using immunohistochemistry on testis sections and fluorescence-based microscopy on intact live seminiferous tubules, we show that CTCFL is only transiently present during spermatogenesis, prior to the onset of meiosis, when the protein co-localizes in nuclei with ubiquitously expressed CTCF. CTCFL distribution overlaps completely with that of Stra8, a retinoic acid-inducible protein essential for the propagation of meiosis. We find that absence of CTCFL in mice causes sub-fertility because of a partially penetrant testicular atrophy. CTCFL deficiency affects the expression of a number of testis-specific genes, including Gal3st1 and Prss50. Combined, these data indicate that CTCFL has a unique role in spermatogenesis. Genome-wide RNA expression studies in ES cells expressing a V5- and GFP-tagged form of CTCFL show that genes that are downregulated in CTCFL-deficient testis are upregulated in ES cells. These data indicate that CTCFL is a male germ cell gene regulator. Furthermore, genome-wide DNA-binding analysis shows that CTCFL binds a consensus sequence that is very similar to that of CTCF. However, only ~3,700 out of the ~5,700 CTCFL- and ~31,000 CTCF-binding sites overlap. CTCFL binds promoters with loosely assembled nucleosomes, whereas CTCF favors consensus sites surrounded by phased nucleosomes. Finally, an ES cell-based rescue assay shows that CTCFL is functionally different from CTCF. CONCLUSIONS: Our data suggest that nucleosome composition specifies the genome-wide binding of CTCFL and CTCF. We propose that the transient expression of CTCFL in spermatogonia and preleptotene spermatocytes serves to occupy a subset of promoters and maintain the expression of male germ cell genes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA