Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39122918

RESUMEN

Naltrexone, an opioid antagonist that blocks the reinforcing properties of opioid agonists, is often prescribed to preclude relapse to opioid use disorder (OUD) following detoxification. However, few laboratory studies have directly investigated the ability of naltrexone to alter relapse-inducing effects of opioid agonists, including their priming strength in reinstatement studies and their impact in brain regions known to be involved in drug-induced reinforcement in MRI studies. Here we directly address this issue by investigating the effects of continuous exposure to naltrexone on 1) fentanyl-induced reinstatement of drug-seeking behavior, 2) fentanyl-induced patterns of blood oxygenation level dependent (BOLD) activation in the nucleus accumbens (NAcc), and 3) fentanyl-induced changes in NAcc functional connectivity (FC) in awake non-human primates that are engaged in ongoing opioid self-administration studies. We found that naltrexone antagonizes the priming strength of fentanyl as shown by a rightward shift in its reinstatement dose-effect curve and that naltrexone surmountably antagonizes the BOLD response induced by fentanyl. However, while naltrexone also countered fentanyl's effects on NAcc FC, the effects were not surmounted by a higher dose of fentanyl. Together, these data suggest that, in contrast to naltrexone's modulation of fentanyl's effects on behavior and BOLD responses, their interactive effects on FC between multiple brain regions do not reflect their receptor-mediated activity. Additionally, we demonstrated opposing effects in the absence and presence of naltrexone on NAcc FC at baseline (i.e., in the absence of any fentanyl prime) suggesting that naltrexone alters FC at baseline, even though naltrexone appears behaviorally silent in the absence of an agonist prime. Together these data provide additional insight into ways in which naltrexone interacts with opioid agonists, both behaviorally and in the brain. Further understanding the effects of opioid agonists on patterns of FC could help elucidate our understanding of the neural processes that contribute to the initiation of and relapse to opioid-seeking behavior in OUD.

2.
eNeuro ; 11(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38627065

RESUMEN

Resting-state networks (RSNs) are increasingly forwarded as candidate biomarkers for neuropsychiatric disorders. Such biomarkers may provide objective measures for evaluating novel therapeutic interventions in nonhuman primates often used in translational neuroimaging research. This study aimed to characterize the RSNs of awake squirrel monkeys and compare the characteristics of those networks in adolescent and adult subjects. Twenty-seven squirrel monkeys [n = 12 adolescents (6 male/6 female) ∼2.5 years and n = 15 adults (7 male/8 female) ∼9.5 years] were gradually acclimated to awake scanning procedures; whole-brain fMRI images were acquired with a 9.4 T scanner. Group-level independent component analysis (ICA; 30 ICs) with dual regression was used to detect and compare RSNs. Twenty ICs corresponding to physiologically meaningful networks representing a range of neural functions, including motor, sensory, reward, and cognitive processes, were identified in both adolescent and adult monkeys. The reproducibility of these RSNs was evaluated across several ICA model orders. Adults showed a trend for greater connectivity compared with adolescent subjects in two of the networks of interest: (1) in the right occipital region with the OFC network and (2) in the left temporal cortex, bilateral occipital cortex, and cerebellum with the posterior cingulate network. However, when age was entered into the above model, this trend for significance was lost. These results demonstrate that squirrel monkey RSNs are stable and consistent with RSNs previously identified in humans, rodents, and other nonhuman primate species. These data also identify several networks in adolescence that are conserved and others that may change into adulthood.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Saimiri , Animales , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Descanso/fisiología , Vigilia/fisiología , Mapeo Encefálico/métodos , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Vías Nerviosas/fisiología
3.
Nat Commun ; 15(1): 878, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296993

RESUMEN

In brain, the striatum is a heterogenous region involved in reward and goal-directed behaviors. Striatal dysfunction is linked to psychiatric disorders, including opioid use disorder (OUD). Striatal subregions are divided based on neuroanatomy, each with unique roles in OUD. In OUD, the dorsal striatum is involved in altered reward processing, formation of habits, and development of negative affect during withdrawal. Using single nuclei RNA-sequencing, we identified both canonical (e.g., dopamine receptor subtype) and less abundant cell populations (e.g., interneurons) in human dorsal striatum. Pathways related to neurodegeneration, interferon response, and DNA damage were significantly enriched in striatal neurons of individuals with OUD. DNA damage markers were also elevated in striatal neurons of opioid-exposed rhesus macaques. Sex-specific molecular differences in glial cell subtypes associated with chronic stress were found in OUD, particularly female individuals. Together, we describe different cell types in human dorsal striatum and identify cell type-specific alterations in OUD.


Asunto(s)
Cuerpo Estriado , Trastornos Relacionados con Opioides , Masculino , Animales , Humanos , Femenino , Macaca mulatta , Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Trastornos Relacionados con Opioides/genética , Trastornos Relacionados con Opioides/metabolismo , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA