Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Cell ; 184(11): 2804-2806, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34048703

RESUMEN

The functional regulatory elements of agronomically important plant genomes have been long sought after. Marand et. al. generate a comprehensive atlas of cis-regulatory elements at single cell resolution in maize, providing a powerful resource for inquiries into the rules of multicellular development and for precision crop engineering.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Zea mays , Genoma de Planta , Secuencias Reguladoras de Ácidos Nucleicos/genética , Zea mays/genética
2.
Plant Cell ; 35(2): 756-775, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36440974

RESUMEN

Stomata, cellular valves found on the surfaces of aerial plant tissues, present a paradigm for studying cell fate and patterning in plants. A highly conserved core set of related basic helix-loop-helix (bHLH) transcription factors regulates stomatal development across diverse species. We characterized BdFAMA in the temperate grass Brachypodium distachyon and found this late-acting transcription factor was necessary and sufficient for specifying stomatal guard cell fate, and unexpectedly, could also induce the recruitment of subsidiary cells in the absence of its paralogue, BdMUTE. The overlap in function is paralleled by an overlap in expression pattern and by unique regulatory relationships between BdMUTE and BdFAMA. To better appreciate the relationships among the Brachypodium stomatal bHLHs, we used in vivo proteomics in developing leaves and found evidence for multiple shared interaction partners. We reexamined the roles of these genes in Arabidopsis thaliana by testing genetic sufficiency within and across species, and found that while BdFAMA and AtFAMA can rescue stomatal production in Arabidopsis fama and mute mutants, only AtFAMA can specify Brassica-specific myrosin idioblasts. Taken together, our findings refine the current models of stomatal bHLH function and regulatory feedback among paralogues within grasses as well as across the monocot/dicot divide.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brachypodium , Arabidopsis/metabolismo , Brachypodium/genética , Estomas de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
3.
Development ; 148(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34463761

RESUMEN

In many land plants, asymmetric cell divisions (ACDs) create and pattern differentiated cell types on the leaf surface. In the Arabidopsis stomatal lineage, BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL) regulates division plane placement and cell fate enforcement. Polarized subcellular localization of BASL is initiated before ACD and persists for many hours after the division in one of the two daughters. Untangling the respective contributions of polarized BASL before and after division is essential to gain a better understanding of its roles in regulating stomatal lineage ACDs. Here, we combine quantitative imaging and lineage tracking with genetic tools that provide temporally restricted BASL expression. We find that pre-division BASL is required for division orientation, whereas BASL polarity post-division ensures proper cell fate commitment. These genetic manipulations allowed us to uncouple daughter-cell size asymmetry from polarity crescent inheritance, revealing independent effects of these two asymmetries on subsequent cell behavior. Finally, we show that there is coordination between the division frequencies of sister cells produced by ACDs, and this coupling requires BASL as an effector of peptide signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , División Celular Asimétrica/fisiología , Proteínas de Ciclo Celular/metabolismo , Polaridad Celular/fisiología , Estomas de Plantas/metabolismo , Estomas de Plantas/fisiología , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Tamaño de la Célula , Transducción de Señal/fisiología
4.
Cell ; 137(7): 1320-30, 2009 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-19523675

RESUMEN

Development in multicellular organisms requires the organized generation of differences. A universal mechanism for creating such differences is asymmetric cell division. In plants, as in animals, asymmetric divisions are correlated with the production of cellular diversity and pattern; however, structural constraints imposed by plant cell walls and the absence of homologs of known animal or fungal cell polarity regulators necessitates that plants utilize new molecules and mechanisms to create asymmetries. Here, we identify BASL, a novel regulator of asymmetric divisions in Arabidopsis. In asymmetrically dividing stomatal-lineage cells, BASL accumulates in a polarized crescent at the cell periphery before division, and then localizes differentially to the nucleus and a peripheral crescent in self-renewing cells and their sisters after division. BASL presence at the cell periphery is critical for its function, and we propose that BASL represents a plant-specific solution to the challenge of asymmetric cell division.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , División Celular , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Núcleo Celular , Polaridad Celular , Estomas de Plantas/citología
5.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33875598

RESUMEN

In many developmental contexts, cell lineages have variable or flexible potency to self-renew. What drives a cell to exit from a proliferative state and begin differentiation, or to retain the capacity to divide days or years later is not clear. Here we exploit the mixed potential of the stomatal lineage ground cell (SLGC) in the Arabidopsis leaf epidermis as a model to explore how cells might balance potential to differentiate with a reentry into proliferation. By generating transcriptomes of fluorescence-activated cell sorting-isolated populations that combinatorically define SLGCs and integrating these data with other stomatal lineage datasets, we find that SLGCs appear poised between proliferation and endoreduplication. Furthermore, we found the RNA polymerase II-related mediator complex interactor DEK and the transcription factor MYB16 accumulate differentially in the stomatal lineage and influence the extent of cell proliferation during leaf development. These findings suggest that SLGC latent potential is maintained by poising of the cell cycle machinery, as well as general and site-specific gene-expression regulators.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Estomas de Plantas/genética , Arabidopsis/metabolismo , Ciclo Celular/genética , Diferenciación Celular/genética , División Celular/genética , Linaje de la Célula/genética , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Hojas de la Planta/metabolismo , Estomas de Plantas/embriología , Estomas de Plantas/metabolismo , Transcriptoma/genética
6.
Plant Physiol ; 188(2): 756-768, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34662401

RESUMEN

Cellular processes rely on the intimate interplay of different molecules, including DNA, RNA, proteins, and metabolites. Obtaining and integrating data on their abundance and dynamics at high temporal and spatial resolution are essential for our understanding of plant growth and development. In the past decade, enzymatic proximity labeling (PL) has emerged as a powerful tool to study local protein and nucleotide ensembles, discover protein-protein and protein-nucleotide interactions, and resolve questions about protein localization and membrane topology. An ever-growing number and continuous improvement of enzymes and methods keep broadening the spectrum of possible applications for PL and make it more accessible to different organisms, including plants. While initial PL experiments in plants required high expression levels and long labeling times, recently developed faster enzymes now enable PL of proteins on a cell type-specific level, even with low-abundant baits, and in different plant species. Moreover, expanding the use of PL for additional purposes, such as identification of locus-specific gene regulators or high-resolution electron microscopy may now be in reach. In this review, we give an overview of currently available PL enzymes and their applications in mammalian cell culture and plants. We discuss the challenges and limitations of PL methods and highlight open questions and possible future directions for PL in plants.


Asunto(s)
Enzimas/metabolismo , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/metabolismo , Mapeo de Interacción de Proteínas/métodos , Proyectos de Investigación , Redes y Vías Metabólicas
7.
Development ; 146(3)2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30665887

RESUMEN

In the Arabidopsis stomatal lineage, cells transit through several distinct precursor identities, each characterized by unique cell division behaviors. Flexibility in the duration of these precursor phases enables plants to alter leaf size and stomatal density in response to environmental conditions; however, transitions between phases must be complete and unidirectional to produce functional and correctly patterned stomata. Among direct transcriptional targets of the stomatal initiating factor SPEECHLESS, a pair of genes, SOL1 and SOL2, are required for effective transitions in the lineage. We show that these two genes, which are homologs of the LIN54 DNA-binding components of the mammalian DREAM complex, are expressed in a cell cycle-dependent manner and regulate cell fate and division properties in the self-renewing early lineage. In the terminal division of the stomatal lineage, however, these two proteins appear to act in opposition to their closest paralog, TSO1, revealing complexity in the gene family that may enable customization of cell divisions in coordination with development.


Asunto(s)
Arabidopsis/metabolismo , Ciclo Celular/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Estomas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/biosíntesis , Receptores de Superficie Celular/biosíntesis , Arabidopsis/genética , Estomas de Plantas/genética , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/genética
8.
Proc Natl Acad Sci U S A ; 116(43): 21914-21924, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31594845

RESUMEN

Plant cells maintain remarkable developmental plasticity, allowing them to clonally reproduce and to repair tissues following wounding; yet plant cells normally stably maintain consistent identities. Although this capacity was recognized long ago, our mechanistic understanding of the establishment, maintenance, and erasure of cellular identities in plants remains limited. Here, we develop a cell-type-specific reprogramming system that can be probed at the genome-wide scale for alterations in gene expression and histone modifications. We show that relationships among H3K27me3, H3K4me3, and gene expression in single cell types mirror trends from complex tissue, and that H3K27me3 dynamics regulate guard cell identity. Further, upon initiation of reprogramming, guard cells induce H3K27me3-mediated repression of a regulator of wound-induced callus formation, suggesting that cells in intact tissues may have mechanisms to sense and resist inappropriate dedifferentiation. The matched ChIP-sequencing (seq) and RNA-seq datasets created for this analysis also serve as a resource enabling inquiries into the dynamic and global-scale distribution of histone modifications in single cell types in plants.


Asunto(s)
Arabidopsis/citología , Reprogramación Celular , Histonas/metabolismo , Transcriptoma , Arabidopsis/metabolismo , Estomas de Plantas/metabolismo
9.
J Cell Sci ; 132(8)2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31028153

RESUMEN

Stomata are structures on the surfaces of most land plants that are required for gas exchange between plants and their environment. In Arabidopsis thaliana, stomata comprise two kidney bean-shaped epidermal guard cells that flank a central pore overlying a cavity in the mesophyll. These guard cells can adjust their shape to occlude or facilitate access to this pore, and in so doing regulate the release of water vapor and oxygen from the plant, in exchange for the intake of carbon dioxide from the atmosphere. Stomatal guard cells are the end product of a specialized lineage whose cell divisions and fate transitions ensure both the production and pattern of cells in aerial epidermal tissues. The stomatal lineage is dynamic and flexible, altering stomatal production in response to environmental change. As such, the stomatal lineage is an excellent system to study how flexible developmental transitions are regulated in plants. In this Cell Science at a Glance article and accompanying poster, we will summarize current knowledge of the divisions and fate decisions during stomatal development, discussing the role of transcriptional regulators, cell-cell signaling and polarity proteins. We will highlight recent work that links the core regulators to systemic or environmental information and provide an evolutionary perspective on stomata lineage regulators in plants.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Linaje de la Célula , Estomas de Plantas/fisiología , Transducción de Señal , Arabidopsis/citología , Proteínas de Arabidopsis/genética , División Celular Asimétrica , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Polaridad Celular , Gases/metabolismo , Regulación de la Expresión Génica de las Plantas , Estomas de Plantas/genética , Células Madre/metabolismo
10.
Development ; 145(14)2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29945871

RESUMEN

All multicellular organisms must properly pattern cell types to generate functional tissues and organs. The organized and predictable cell lineages of the Brachypodium leaf enabled us to characterize the role of the MAPK kinase kinase gene BdYODA1 in regulating asymmetric cell divisions. We find that YODA genes promote normal stomatal spacing patterns in both Arabidopsis and Brachypodium, despite species-specific differences in those patterns. Using lineage tracing and cell fate markers, we show that, unexpectedly, patterning defects in bdyoda1 mutants do not arise from faulty physical asymmetry in cell divisions but rather from improper enforcement of alternative cellular fates after division. These cross-species comparisons allow us to refine our understanding of MAPK activities during plant asymmetric cell divisions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Brachypodium/enzimología , Quinasas Quinasa Quinasa PAM/metabolismo , Estomas de Plantas/enzimología , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brachypodium/citología , Brachypodium/genética , Quinasas Quinasa Quinasa PAM/genética , Estomas de Plantas/citología , Estomas de Plantas/genética , Especificidad de la Especie
11.
Development ; 145(6)2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29467245

RESUMEN

Plants, with cells fixed in place by rigid walls, often utilize spatial and temporally distinct cell division programs to organize and maintain organs. This leads to the question of how developmental regulators interact with the cell cycle machinery to link cell division events with particular developmental trajectories. In Arabidopsis leaves, the development of stomata, two-celled epidermal valves that mediate plant-atmosphere gas exchange, relies on a series of oriented stem cell-like asymmetric divisions followed by a single symmetric division. The stomatal lineage is embedded in a tissue in which other cells transition from proliferation to postmitotic differentiation earlier, necessitating stomatal lineage-specific factors to prolong competence to divide. We show that the D-type cyclin, CYCD7;1, is specifically expressed just prior to the symmetric guard cell-forming division, and that it is limiting for this division. Further, we find that CYCD7;1 is capable of promoting divisions in multiple contexts, likely through RBR1-dependent promotion of the G1/S transition, but that CYCD7;1 is regulated at the transcriptional level by cell type-specific transcription factors that confine its expression to the appropriate developmental window.


Asunto(s)
Arabidopsis/metabolismo , División Celular/genética , Ciclina D/metabolismo , Estomas de Plantas/citología , Arabidopsis/citología , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/genética , Linaje de la Célula/genética , Regulación de la Expresión Génica de las Plantas/genética , Epidermis de la Planta/citología , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Estomas de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
New Phytol ; 230(2): 867-877, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33378550

RESUMEN

Quantitative information on the spatiotemporal distribution of polarised proteins is central for understanding cell-fate determination, yet collecting sufficient data for statistical analysis is difficult to accomplish with manual measurements. Here we present Polarity Measurement (Pome), a semi-automated pipeline for the quantification of cell polarity and demonstrate its application to a variety of developmental contexts. Pome analysis reveals that, during asymmetric cell divisions in the Arabidopsis thaliana stomatal lineage, polarity proteins BASL and BRXL2 are more asynchronous and less mutually dependent than previously thought. A similar analysis of the linearly arrayed stomatal lineage of Brachypodium distachyon revealed that the MAPKKK BdYDA1 is segregated and polarised following asymmetrical divisions. Our results demonstrate that Pome is a versatile tool, which by itself or combined with tissue-level studies and advanced microscopy techniques can help to uncover new mechanisms of cell polarity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Ciclo Celular , Linaje de la Célula , Polaridad Celular , Células Vegetales , Estomas de Plantas
13.
New Phytol ; 227(6): 1636-1648, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31985072

RESUMEN

When plants emerged from their aquatic origins to colonise land, they needed to avoid desiccation while still enabling gas and water exchange with the environment. The solution was the development of a waxy cuticle interrupted by epidermal pores, known as stomata. Despite the importance of stomata in plant physiology and their contribution to global water and carbon cycles, our knowledge of the genetic basis of stomatal development is limited mostly to the model dicot, Arabidopsis thaliana. This limitation is particularly troublesome when evaluating grasses, whose members represent our most agriculturally significant crops. Grass stomatal development follows a trajectory strikingly different from Arabidopsis and their uniquely shaped four-celled stomatal complexes are especially responsive to environmental inputs. Thus, understanding the development and regulation of these efficient complexes is of particular interest for the purposes of crop engineering. This review focuses on genetic regulation of grass stomatal development and prospects for the future, highlighting discoveries enabled by parallel comparative investigations in cereal crops and related genetic model species such as Brachypodium distachyon.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brachypodium , Arabidopsis/genética , Brachypodium/genética , Productos Agrícolas/genética , Estomas de Plantas
14.
Plant Cell ; 28(7): 1722-37, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27354558

RESUMEN

In plants, the presence of a load-bearing cell wall presents unique challenges during cell division. Unlike other eukaryotes, which undergo contractile cytokinesis upon completion of mitosis, plants instead synthesize and assemble a new dividing cell wall to separate newly formed daughter cells. Here, we mine transcriptome data from individual cell types in the Arabidopsis thaliana stomatal lineage and identify CSLD5, a member of the Cellulose Synthase Like-D family, as a cell wall biosynthesis enzyme uniquely enriched in rapidly dividing cell populations. We further show that CSLD5 is a direct target of SPEECHLESS, the master transcriptional regulator of these divisions during stomatal development. Using a combination of genetic analysis and in vivo localization of fluorescently tagged fusion proteins, we show that CSLD5 preferentially accumulates in dividing plant cells where it participates in the construction of newly forming cell plates. We show that CSLD5 is an unstable protein that is rapidly degraded upon completion of cell division and that the protein turnover characteristics of CSLD5 are altered in ccs52a2 mutants, indicating that CSLD5 turnover may be regulated by a cell cycle-associated E3-ubiquitin ligase, the anaphase-promoting complex.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucosiltransferasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Glucosiltransferasas/genética , Unión Proteica , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
15.
Proc Natl Acad Sci U S A ; 113(29): 8326-31, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27382177

RESUMEN

Stomata, epidermal valves facilitating plant-atmosphere gas exchange, represent a powerful model for understanding cell fate and pattern in plants. Core basic helix-loop-helix (bHLH) transcription factors regulating stomatal development were identified in Arabidopsis, but this dicot's developmental pattern and stomatal morphology represent only one of many possibilities in nature. Here, using unbiased forward genetic screens, followed by analysis of reporters and engineered mutants, we show that stomatal initiation in the grass Brachypodium distachyon uses orthologs of stomatal regulators known from Arabidopsis but that the function and behavior of individual genes, the relationships among genes, and the regulation of their protein products have diverged. Our results highlight ways in which a kernel of conserved genes may be alternatively wired to produce diversity in patterning and morphology and suggest that the stomatal transcription factor module is a prime target for breeding or genome modification to improve plant productivity.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Brachypodium/genética , Proteínas de Plantas/genética , Estomas de Plantas/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Filogenia , Alineación de Secuencia
16.
BMC Plant Biol ; 18(1): 60, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29636017

RESUMEN

BACKGROUND: Mitogen-activated protein kinases (MAPK) signaling affects many processes, some of which have different outcomes in the same cell. In Arabidopsis, activation of a MAPK cascade consisting of YODA, MKK4/5 and MPK3/6 inhibits early stages of stomatal developmental, but the ability to halt stomatal progression is lost at the later stage when guard mother cells (GMCs) transition to guard cells (GCs). Rather than downregulating cascade components, stomatal precursors must have a mechanism to prevent late stage inhibition because the same MKKs and MPKs mediate other physiological responses. RESULTS: We artificially activated the MAPK cascade using MKK7, another MKK that can modulate stomatal development, and found that inhibition of stomatal development is still possible in GMCs. This suggests that MKK4/5, but not MKK7, are specifically prevented from inhibiting stomatal development. To identify regions of MKKs responsible for cell-type specific regulation, we used a domain swap approach with MKK7 and a battery of in vitro and in vivo kinase assays. We found that N-terminal regions of MKK5 and MKK7 establish specific signal-to-output connections like they do in other organisms, but they do so in combination with previously undescribed modules in the C-terminus. One of these modules encoding the GMC-specific regulation of MKK5, when swapped with sequences from the equivalent region of MKK7, allows MKK5 to mediate robust inhibition of late stomatal development. CONCLUSIONS: Because MKK structure is conserved across species, the identification of new MKK specificity modules and signaling rules furthers our understanding of how eukaryotes create specificity in complex biological systems.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , MAP Quinasa Quinasa 7/genética , MAP Quinasa Quinasa 7/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
17.
Nature ; 482(7385): 419-22, 2012 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-22307275

RESUMEN

Plants must coordinate the regulation of biochemistry and anatomy to optimize photosynthesis and water-use efficiency. The formation of stomata, epidermal pores that facilitate gas exchange, is highly coordinated with other aspects of photosynthetic development. The signalling pathways controlling stomata development are not fully understood, although mitogen-activated protein kinase (MAPK) signalling is known to have key roles. Here we demonstrate in Arabidopsis that brassinosteroid regulates stomatal development by activating the MAPK kinase kinase (MAPKKK) YDA (also known as YODA). Genetic analyses indicate that receptor kinase-mediated brassinosteroid signalling inhibits stomatal development through the glycogen synthase kinase 3 (GSK3)-like kinase BIN2, and BIN2 acts upstream of YDA but downstream of the ERECTA family of receptor kinases. Complementary in vitro and in vivo assays show that BIN2 phosphorylates YDA to inhibit YDA phosphorylation of its substrate MKK4, and that activities of downstream MAPKs are reduced in brassinosteroid-deficient mutants but increased by treatment with either brassinosteroid or GSK3-kinase inhibitor. Our results indicate that brassinosteroid inhibits stomatal development by alleviating GSK3-mediated inhibition of this MAPK module, providing two key links; that of a plant MAPKKK to its upstream regulators and of brassinosteroid to a specific developmental output.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Brasinoesteroides/farmacología , Glucógeno Sintasa Quinasa 3/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/crecimiento & desarrollo , Proteínas Quinasas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/genética , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Estomas de Plantas/enzimología , Estomas de Plantas/genética , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Nicotiana
18.
Development ; 141(17): 3298-302, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25139852

RESUMEN

A diverse group of researchers working on both plant and animal systems met at a Company of Biologists workshop to discuss 'Coordinating Cell Polarity'. The meeting included considerable free discussion as well as presentations exploring the ways that groups of cells in these various systems achieve coordinated cell polarity. Here, we discuss commonalities, differences and themes that emerged from these sessions that will serve to inform ongoing studies.


Asunto(s)
Polaridad Celular , Animales , Fenómenos Biomecánicos , Drosophila melanogaster/citología , Ratones , Modelos Biológicos , Células Vegetales/metabolismo , Transducción de Señal
19.
New Phytol ; 216(1): 69-75, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28833173

RESUMEN

Stomata are simultaneously tasked with permitting the uptake of carbon dioxide for photosynthesis while limiting water loss from the plant. This process is mainly regulated by guard cell control of the stomatal aperture, but recent advancements have highlighted the importance of several genes that control stomatal development. Using targeted genetic manipulations of the stomatal lineage and a combination of gas exchange and microscopy techniques, we show that changes in stomatal development of the epidermal layer lead to coupled changes in the underlying mesophyll tissues. This coordinated response tends to match leaf photosynthetic potential (Vcmax ) with gas-exchange capacity (gsmax ), and hence the uptake of carbon dioxide for water lost. We found that different genetic regulators systematically altered tissue coordination in separate ways: the transcription factor SPEECHLESS (SPCH) primarily affected leaf size and thickness, whereas peptides in the EPIDERMAL PATTERNING FACTOR (EPF) family altered cell density in the mesophyll. It was also determined that interlayer coordination required the cell-surface receptor TOO MANY MOUTHS (TMM). These results demonstrate that stomata-specific regulators can alter mesophyll properties, which provides insight into how molecular pathways can organize leaf tissues to coordinate gas exchange and suggests new strategies for improving plant water-use efficiency.


Asunto(s)
Arabidopsis/fisiología , Gases/metabolismo , Células del Mesófilo/metabolismo , Estomas de Plantas/fisiología , Transducción de Señal , Factores de Transcripción/metabolismo , Hojas de la Planta/anatomía & histología , Estomas de Plantas/genética , Receptores de Superficie Celular/metabolismo
20.
Plant Cell ; 26(8): 3358-71, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25172143

RESUMEN

When multiple mitogen-activated protein kinase (MAPK) components are recruited recurrently to transduce signals of different origins, and often opposing outcomes, mechanisms to enforce signaling specificity are of utmost importance. These mechanisms are largely uncharacterized in plant MAPK signaling networks. The Arabidopsis thaliana stomatal lineage was previously used to show that when rendered constitutively active, four MAPK kinases (MKKs), MKK4/5/7/9, are capable of perturbing stomatal development and that these kinases comprise two pairs, MKK4/5 and MKK7/9, with both overlapping and divergent functions. We characterized the contributions of specific structural domains of these four "stomatal" MKKs to MAPK signaling output and specificity both in vitro and in vivo within the three discrete cell types of the stomatal lineage. These results verify the influence of functional docking (D) domains of MKKs on MAPK signal output and identify novel regulatory functions for previously uncharacterized structures within the N termini of MKK4/5. Beyond this, we present a novel function of the D-domains of MKK7/9 in regulating the subcellular localization of these kinases. These results provide tools to broadly assess the extent to which these and additional motifs within MKKs function to regulate MAPK signal output throughout the plant.


Asunto(s)
Arabidopsis/metabolismo , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/química , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/fisiología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Sitios de Unión , Eliminación de Gen , MAP Quinasa Quinasa 7/química , MAP Quinasa Quinasa 7/metabolismo , MAP Quinasa Quinasa 7/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/fisiología , Proteínas Quinasas Activadas por Mitógenos/química , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/fisiología , Datos de Secuencia Molecular , Estomas de Plantas/citología , Estomas de Plantas/metabolismo , Estomas de Plantas/fisiología , Estructura Terciaria de Proteína , Transporte de Proteínas , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA