Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Biochem J ; 480(13): 999-1014, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37418286

RESUMEN

Global temperatures are rising from increasing concentrations of greenhouse gases in the atmosphere associated with anthropogenic activities. Global warming includes a warmer shift in mean temperatures as well as increases in the probability of extreme heating events, termed heat waves. Despite the ability of plants to cope with temporal variations in temperature, global warming is increasingly presenting challenges to agroecosystems. The impact of warming on crop species has direct consequences on food security, therefore understanding impacts and opportunities to adapt crops to global warming necessitates experimentation that allows for modification of growth environments to represent global warming scenarios. Published studies addressing crop responses to warming are extensive, however, in-field studies where growth temperature is manipulated to mimic global warming are limited. Here, we provide an overview of in-field heating techniques employed to understand crop responses to warmer growth environments. We then focus on key results associated with season-long warming, as expected with rising global mean temperatures, and with heat waves, as a consequence of increasing temperature variability and rising global mean temperatures. We then discuss the role of rising temperatures on atmospheric water vapor pressure deficit and potential implications for crop photosynthesis and productivity. Finally, we review strategies by which crop photosynthetic processes might be optimized to adapt crops to the increasing temperatures and frequencies of heat waves. Key findings from this review are that higher temperatures consistently reduce photosynthesis and yields of crops even as atmospheric carbon dioxide increases, yet potential strategies to minimize losses from high-temperature exist.


Asunto(s)
Calentamiento Global , Fotosíntesis , Fotosíntesis/fisiología , Calor , Temperatura , Productos Agrícolas
2.
Plant Cell Environ ; 46(2): 405-421, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36358006

RESUMEN

Plants have evolved to adapt to their neighbours through plastic trait responses. In intercrop systems, plant growth occurs at different spatial and temporal dimensions, creating a competitive light environment where aboveground plasticity may support complementarity in light-use efficiency, realizing yield gains per unit area compared with monoculture systems. Physiological and architectural plasticity including the consequences for light-use efficiency and yield in a maize-soybean solar corridor intercrop system was compared, empirically, with the standard monoculture systems of the Midwest, USA. The impact of reducing maize plant density on yield was investigated in the following year. Intercropped maize favoured physiological plasticity over architectural plasticity, which maintained harvest index (HI) but reduced light interception efficiency (ɛi ) and conversion efficiency (ɛc ). Intercropped soybean invested in both plasticity responses, which maintained ɛi , but HI and ɛc decreased. Reducing maize plant density within the solar corridor rows did not improve yields under monoculture and intercrop systems. Overall, the intercrop decreased land-use efficiency by 9%-19% and uncoordinated investment in aboveground plasticity by each crop under high maize plant density does not support complementarity in light-use efficiency. Nonetheless, the mechanistic understanding gained from this study may improve crop cultivars and intercrop designs for the Midwest to increase yield.


Asunto(s)
Glycine max , Zea mays , Glycine max/fisiología , Zea mays/fisiología , Hojas de la Planta , Productos Agrícolas
3.
J Exp Bot ; 74(5): 1629-1641, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36571807

RESUMEN

Improvements in genetics, technology, and agricultural intensification have increased soybean yields; however, adverse climate conditions may prevent these gains from being fully realized in the future. Higher growing season temperatures reduce soybean yields in key production regions including the US Midwest, and better understanding of the developmental and physiological mechanisms that constrain soybean yield under high temperature conditions is needed. This study tested the response of two soybean cultivars to four elevated temperature treatments (+1.7, +2.6, +3.6, and +4.8 °C) in the field over three growing seasons and identified threshold temperatures for response and linear versus non-linear trait responses to temperature. Yield declined non-linearly to temperature, with decreases apparent when canopy temperature exceeded 20.9 °C for the locally adapted cultivar and 22.7°C for a cultivar adapted to more southern locations. While stem node number increased with increasing temperature, leaf area index decreased substantially. Pod production, seed size, and harvest index significantly decreased with increasing temperature. The seasonal average temperature of even the mildest treatment exceeded the threshold temperatures for yield loss, emphasizing the importance of improving temperature tolerance in soybean germplasm with intensifying climate change.


Asunto(s)
Glycine max , Calor , Temperatura , Glycine max/genética , Hojas de la Planta/fisiología , Semillas/fisiología
4.
Glob Chang Biol ; 29(24): 7012-7028, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37589204

RESUMEN

Terrestrial enhanced weathering (EW) through the application of Mg- or Ca-rich rock dust to soil is a negative emission technology with the potential to address impacts of climate change. The effectiveness of EW was tested over 4 years by spreading ground basalt (50 t ha-1 year-1 ) on maize/soybean and miscanthus cropping systems in the Midwest US. The major elements of the carbon budget were quantified through measurements of eddy covariance, soil carbon flux, and biomass. The movement of Mg and Ca to deep soil, released by weathering, balanced by a corresponding alkalinity flux, was used to measure the drawdown of CO2 , where the release of cations from basalt was measured as the ratio of rare earth elements to base cations in the applied rock dust and in the surface soil. Basalt application stimulated peak biomass and net primary production in both cropping systems and caused a small but significant stimulation of soil respiration. Net ecosystem carbon balance (NECB) was strongly negative for maize/soybean (-199 to -453 g C m-2 year-1 ) indicating this system was losing carbon to the atmosphere. Average EW (102 g C m-2 year-1 ) offset carbon loss in the maize/soybean by 23%-42%. NECB of miscanthus was positive (63-129 g C m-2 year-1 ), indicating carbon gain in the system, and EW greatly increased inorganic carbon storage by an additional 234 g C m-2 year-1 . Our analysis indicates a co-deployment of a perennial biofuel crop (miscanthus) with EW leads to major wins-increased harvested yields of 29%-42% with additional carbon dioxide removal (CDR) of 8.6 t CO2 ha-1 year-1 . EW applied to maize/soybean drives a CDR of 3.7 t CO2 ha-1 year-1 , which partially offsets well-established carbon losses from soil from this crop rotation. EW applied in the US Midwest creates measurable improvements to the carbon budgets perennial bioenergy crops and conventional row crops.


Asunto(s)
Dióxido de Carbono , Ecosistema , Suelo , Poaceae , Zea mays , Polvo , Cationes , Agricultura
5.
Plant Biotechnol J ; 20(4): 711-721, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34786804

RESUMEN

Adapting crops to warmer growing season temperatures is a major challenge in mitigating the impacts of climate change on crop production. Warming temperatures drive greater evaporative demand and can directly interfere with both reproductive and vegetative physiological processes. Most of the world's crop species have C3 photosynthetic metabolism for which increasing temperature means higher rates of photorespiration, wherein the enzyme responsible for fixing CO2 fixes O2 instead followed by an energetically costly recycling pathway that spans several cell compartments. In C3 crops like wheat, rice and soybean, photorespiration translates into large yield losses that are predicted to increase as global temperature warms. Engineering less energy-intensive alternative photorespiratory pathways into crop chloroplasts drives increases in C3 biomass production under agricultural field conditions, but the efficacy of these pathways in mitigating the impact of warmer growing temperatures has not been tested. We grew tobacco plants expressing an alternative photorespiratory pathway under current and elevated temperatures (+5 °C) in agricultural field conditions. Engineered plants exhibited higher photosynthetic quantum efficiency under heated conditions than the control plants, and produced 26% (between 16% and 37%) more total biomass than WT plants under heated conditions, compared to 11% (between 5% and 17%) under ambient conditions. That is, engineered plants sustained 19% (between 11% and 21%) less yield loss under heated conditions compared to non-engineered plants. These results support the theoretical predictions of temperature impacts on photorespiratory losses and provide insight toward the optimisation strategies required to help sustain or improve C3 crop yields in a warming climate.


Asunto(s)
Biodiversidad , Dióxido de Carbono , Dióxido de Carbono/metabolismo , Productos Agrícolas/fisiología , Fotosíntesis/fisiología , Temperatura
6.
New Phytol ; 236(5): 1661-1675, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36098668

RESUMEN

Use of a complete dynamic model of NADP-malic enzyme C4 photosynthesis indicated that, during transitions from dark or shade to high light, induction of the C4 pathway was more rapid than that of C3 , resulting in a predicted transient increase in bundle-sheath CO2 leakiness (ϕ). Previously, ϕ has been measured at steady state; here we developed a new method, coupling a tunable diode laser absorption spectroscope with a gas-exchange system to track ϕ in sorghum and maize through the nonsteady-state condition of photosynthetic induction. In both species, ϕ showed a transient increase to > 0.35 before declining to a steady state of 0.2 by 1500 s after illumination. Average ϕ was 60% higher than at steady state over the first 600 s of induction and 30% higher over the first 1500 s. The transient increase in ϕ, which was consistent with model prediction, indicated that capacity to assimilate CO2 into the C3 cycle in the bundle sheath failed to keep pace with the rate of dicarboxylate delivery by the C4 cycle. Because nonsteady-state light conditions are the norm in field canopies, the results suggest that ϕ in these major crops in the field is significantly higher and energy conversion efficiency lower than previous measured values under steady-state conditions.


Asunto(s)
Dióxido de Carbono , Fotosíntesis , Dióxido de Carbono/metabolismo , Zea mays/metabolismo , Productos Agrícolas/metabolismo , Ataxia , Hojas de la Planta/metabolismo
7.
Photosynth Res ; 154(2): 169-182, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36163583

RESUMEN

Rubisco activase (Rca) facilitates the catalytic repair of Rubisco, the CO2-fixing enzyme of photosynthesis, following periods of darkness, low to high light transitions or stress. Removal of the redox-regulated isoform of Rubisco activase, Rca-α, enhances photosynthetic induction in Arabidopsis and has been suggested as a strategy for the improvement of crops, which may experience frequent light transitions in the field; however, this has never been tested in a crop species. Therefore, we used RNAi to reduce the Rca-α content of soybean (Glycine max cv. Williams 82) below detectable levels and then characterized the growth, photosynthesis, and Rubisco activity of the resulting transgenics, in both growth chamber and field conditions. Under a 16 h sine wave photoperiod, the reduction of Rca-α contents had no impact on morphological characteristics, leaf expansion rate, or total biomass. Photosynthetic induction rates were unaltered in both chamber-grown and field-grown plants. Plants with reduced Rca-α content maintained the ability to regulate Rubisco activity in low light just as in control plants. This result suggests that in soybean, Rca-α is not as centrally involved in the regulation of Rca oligomer activity as it is in Arabidopsis. The isoform stoichiometry supports this conclusion, as Rca-α comprises only ~ 10% of the Rubisco activase content of soybean, compared to ~ 50% in Arabidopsis. This is likely to hold true in other species that contain a low ratio of Rca-α to Rca-ß isoforms.


Asunto(s)
Arabidopsis , Ribulosa-Bifosfato Carboxilasa , Ribulosa-Bifosfato Carboxilasa/metabolismo , Glycine max/metabolismo , Arabidopsis/metabolismo , Activador de Tejido Plasminógeno , Proteínas de Plantas/metabolismo , Fotosíntesis/fisiología , Isoformas de Proteínas , Oxidación-Reducción
8.
Plant Cell Environ ; 45(1): 80-94, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34664281

RESUMEN

Traditional gas exchange measurements are cumbersome, which makes it difficult to capture variation in biochemical parameters, namely the maximum rate of carboxylation measured at a reference temperature (Vcmax25 ) and the maximum electron transport at a reference temperature (Jmax25 ), in response to growth temperature over time from days to weeks. Hyperspectral reflectance provides reliable measures of Vcmax25 and Jmax25 ; however, the capability of this method to capture biochemical acclimations of the two parameters to high growth temperature over time has not been demonstrated. In this study, Vcmax25 and Jmax25 were measured over multiple growth stages during two growing seasons for field-grown soybeans using both gas exchange techniques and leaf spectral reflectance under ambient and four elevated canopy temperature treatments (ambient+1.5, +3, +4.5, and +6°C). Spectral vegetation indices and machine learning methods were used to build predictive models for Vcmax25 and Jmax25 , based on the leaf reflectance. Results showed that these models yielded an R2 of 0.57-0.65 and 0.48-0.58 for Vcmax25 and Jmax25 , respectively. Hyperspectral reflectance captured biochemical acclimation of leaf photosynthesis to high temperature in the field, improving spatial and temporal resolution in the ability to assess the impact of future warming on crop productivity.


Asunto(s)
Glycine max/fisiología , Modelos Biológicos , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Aclimatación , Illinois , Aprendizaje Automático , Nitrógeno/análisis , Hojas de la Planta/química , Temperatura
9.
J Exp Bot ; 73(10): 3157-3172, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35218184

RESUMEN

Gas exchange techniques revolutionized plant research and advanced understanding, including associated fluxes and efficiencies, of photosynthesis, photorespiration, and respiration of plants from cellular to ecosystem scales. These techniques remain the gold standard for inferring photosynthetic rates and underlying physiology/biochemistry, although their utility for high-throughput phenotyping (HTP) of photosynthesis is limited both by the number of gas exchange systems available and the number of personnel available to operate the equipment. Remote sensing techniques have long been used to assess ecosystem productivity at coarse spatial and temporal resolutions, and advances in sensor technology coupled with advanced statistical techniques are expanding remote sensing tools to finer spatial scales and increasing the number and complexity of phenotypes that can be extracted. In this review, we outline the photosynthetic phenotypes of interest to the plant science community and describe the advances in high-throughput techniques to characterize photosynthesis at spatial scales useful to infer treatment or genotypic variation in field-based experiments or breeding trials. We will accomplish this objective by presenting six lessons learned thus far through the development and application of proximal/remote sensing-based measurements and the accompanying statistical analyses. We will conclude by outlining what we perceive as the current limitations, bottlenecks, and opportunities facing HTP of photosynthesis.


Asunto(s)
Ecosistema , Fotosíntesis , Genotipo , Fenotipo
10.
J Exp Bot ; 72(4): 1295-1306, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33340310

RESUMEN

Improving photosynthesis is considered a promising way to increase crop yield to feed a growing population. Realizing this goal requires non-destructive techniques to quantify photosynthetic variation among crop cultivars. Despite existing remote sensing-based approaches, it remains a question whether solar-induced fluorescence (SIF) can facilitate screening crop cultivars of improved photosynthetic capacity in plant breeding trials. Here we tested a hypothesis that SIF yield rather than SIF had a better relationship with the maximum electron transport rate (Jmax). Time-synchronized hyperspectral images and irradiance spectra of sunlight under clear-sky conditions were combined to estimate SIF and SIF yield, which were then correlated with ground-truth Vcmax and Jmax. With observations binned over time (i.e. group 1: 6, 7, and 12 July 2017; group 2: 31 July and 18 August 2017; and group 3: 24 and 25 July 2018), SIF yield showed a stronger negative relationship, compared with SIF, with photosynthetic variables. Using SIF yield for Jmax (Vcmax) predictions, the regression analysis exhibited an R2 of 0.62 (0.71) and root mean square error (RMSE) of 11.88 (46.86) µmol m-2 s-1 for group 1, an R2 of 0.85 (0.72) and RMSE of 13.51 (49.32) µmol m-2 s-1 for group 2, and an R2 of 0.92 (0.87) and RMSE of 15.23 (30.29) µmol m-2 s-1 for group 3. The combined use of hyperspectral images and irradiance measurements provides an alternative yet promising approach to characterization of photosynthetic parameters at plot level.


Asunto(s)
Clorofila , Luz Solar , Fluorescencia , Fotosíntesis , Hojas de la Planta , Análisis de Regresión
11.
J Exp Bot ; 72(13): 4965-4980, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33914063

RESUMEN

Previous studies have found that maximum quantum yield of CO2 assimilation (Φ CO2,max,app) declines in lower canopies of maize and miscanthus, a maladaptive response to self-shading. These observations were limited to single genotypes, leaving it unclear whether the maladaptive shade response is a general property of this C4 grass tribe, the Andropogoneae. We explored the generality of this maladaptation by testing the hypothesis that erect leaf forms (erectophiles), which allow more light into the lower canopy, suffer less of a decline in photosynthetic efficiency than drooping leaf (planophile) forms. On average, Φ CO2,max,app declined 27% in lower canopy leaves across 35 accessions, but the decline was over twice as great in planophiles than in erectophiles. The loss of photosynthetic efficiency involved a decoupling between electron transport and assimilation. This was not associated with increased bundle sheath leakage, based on 13C measurements. In both planophiles and erectophiles, shaded leaves had greater leaf absorptivity and lower activities of key C4 enzymes than sun leaves. The erectophile form is considered more productive because it allows a more effective distribution of light through the canopy to support photosynthesis. We show that in sorghum, it provides a second benefit, maintenance of higher Φ CO2,max,app to support efficient use of that light resource.


Asunto(s)
Sorghum , Transporte de Electrón , Fotosíntesis , Hojas de la Planta , Zea mays
12.
J Exp Bot ; 72(8): 2822-2844, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33619527

RESUMEN

As global land surface temperature continues to rise and heatwave events increase in frequency, duration, and/or intensity, our key food and fuel cropping systems will likely face increased heat-related stress. A large volume of literature exists on exploring measured and modelled impacts of rising temperature on crop photosynthesis, from enzymatic responses within the leaf up to larger ecosystem-scale responses that reflect seasonal and interannual crop responses to heat. This review discusses (i) how crop photosynthesis changes with temperature at the enzymatic scale within the leaf; (ii) how stomata and plant transport systems are affected by temperature; (iii) what features make a plant susceptible or tolerant to elevated temperature and heat stress; and (iv) how these temperature and heat effects compound at the ecosystem scale to affect crop yields. Throughout the review, we identify current advancements and future research trajectories that are needed to make our cropping systems more resilient to rising temperature and heat stress, which are both projected to occur due to current global fossil fuel emissions.


Asunto(s)
Ecosistema , Fotosíntesis , Respuesta al Choque Térmico , Calor , Hojas de la Planta , Temperatura
13.
Glob Chang Biol ; 27(11): 2403-2415, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33844873

RESUMEN

High temperature and accompanying high vapor pressure deficit often stress plants without causing distinctive changes in plant canopy structure and consequential spectral signatures. Sun-induced chlorophyll fluorescence (SIF), because of its mechanistic link with photosynthesis, may better detect such stress than remote sensing techniques relying on spectral reflectance signatures of canopy structural changes. However, our understanding about physiological mechanisms of SIF and its unique potential for physiological stress detection remains less clear. In this study, we measured SIF at a high-temperature experiment, Temperature Free-Air Controlled Enhancement, to explore the potential of SIF for physiological investigations. The experiment provided a gradient of soybean canopy temperature with 1.5, 3.0, 4.5, and 6.0°C above the ambient canopy temperature in the open field environments. SIF yield, which is normalized by incident radiation and the fraction of absorbed photosynthetically active radiation, showed a high correlation with photosynthetic light use efficiency (r = 0.89) and captured dynamic plant responses to high-temperature conditions. SIF yield was affected by canopy structural and plant physiological changes associated with high-temperature stress (partial correlation r = 0.60 and -0.23). Near-infrared reflectance of vegetation, only affected by canopy structural changes, was used to minimize the canopy structural impact on SIF yield and to retrieve physiological SIF yield (ΦF ) signals. ΦF further excludes the canopy structural impact than SIF yield and indicates plant physiological variability, and we found that ΦF outperformed SIF yield in responding to physiological stress (r = -0.37). Our findings highlight that ΦF sensitively responded to the physiological downregulation of soybean gross primary productivity under high temperature. ΦF , if reliably derived from satellite SIF, can support monitoring regional crop growth and different ecosystems' vegetation productivity under environmental stress and climate change.


Asunto(s)
Clorofila , Ecosistema , Fluorescencia , Fotosíntesis , Hojas de la Planta , Estaciones del Año , Glycine max , Temperatura
14.
Plant J ; 97(5): 872-886, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30447177

RESUMEN

Iron (Fe) and zinc (Zn) deficiencies are a global human health problem that may worsen by the growth of crops at elevated atmospheric CO2 concentration (eCO2 ). However, climate change will also involve higher temperature, but it is unclear how the combined effect of eCO2 and higher temperature will affect the nutritional quality of food crops. To begin to address this question, we grew soybean (Glycine max) in a Temperature by Free-Air CO2 Enrichment (T-FACE) experiment in 2014 and 2015 under ambient (400 µmol mol-1 ) and elevated (600 µmol mol-1 ) CO2 concentrations, and under ambient and elevated temperatures (+2.7°C day and +3.4°C at night). In our study, eCO2 significantly decreased Fe concentration in soybean seeds in both seasons (-8.7 and -7.7%) and Zn concentration in one season (-8.9%), while higher temperature (at ambient CO2 concentration) had the opposite effect. The combination of eCO2 with elevated temperature generally restored seed Fe and Zn concentrations to levels obtained under ambient CO2 and temperature conditions, suggesting that the potential threat to human nutrition by increasing CO2 concentration may not be realized. In general, seed Fe concentration was negatively correlated with yield, suggesting inherent limitations to increasing seed Fe. In addition, we confirm our previous report that the concentration of seed storage products and several minerals varies with node position at which the seeds developed. Overall, these results demonstrate the complexity of predicting climate change effects on food and nutritional security when various environmental parameters change in an interactive manner.


Asunto(s)
Dióxido de Carbono/fisiología , Glycine max/fisiología , Minerales/metabolismo , Boro/metabolismo , Cambio Climático , Productos Agrícolas , Ambiente , Abastecimiento de Alimentos , Hierro/metabolismo , Valor Nutritivo , Semillas/crecimiento & desarrollo , Semillas/fisiología , Glycine max/crecimiento & desarrollo , Temperatura , Zinc/metabolismo
15.
J Exp Bot ; 71(12): 3690-3700, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32170296

RESUMEN

Increasing atmospheric carbon dioxide concentration ([CO2]) directly impacts C3 plant photosynthesis and productivity, and the rate at which [CO2] is increasing is greater than initially predicted by worst-case scenario climate models. Thus, it is increasingly important to assess the physiological responses of C3 plants, especially those that serve as important crops, to [CO2] beyond the mid-range levels used in traditional experiments. Here, we grew the C3 crop soybean (Glycine max) at eight different [CO2] levels spanning subambient (340 ppm) to the highest level thought plausible (~2000 ppm) in chambers for 5 weeks. Physiological development was delayed and plant height and total leaf area increased at [CO2] levels higher than ambient conditions, with very little difference in these parameters among the elevated [CO2] treatments >900 ppm. Daily photosynthesis initially increased with rising [CO2] but began to level off at ~1000 ppm CO2. Similar results occurred in biomass accumulation. Thus, as [CO2] continues to match or exceed the worst-case emission scenarios, these results indicate that carbon gain, growth, and potentially yield increases will diminish, thereby ultimately constraining the positive impact that continuing increases in atmospheric [CO2] could have on crop productivity and global terrestrial carbon sinks.


Asunto(s)
Dióxido de Carbono , Glycine max , Biomasa , Fotosíntesis , Hojas de la Planta
16.
Glob Chang Biol ; 25(12): 4352-4368, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31411789

RESUMEN

Elevated atmospheric CO2 concentration ([CO2 ]) generally enhances C3 plant productivity, whereas acute heat stress, which occurs during heat waves, generally elicits the opposite response. However, little is known about the interaction of these two variables, especially during key reproductive phases in important temperate food crops, such as soybean (Glycine max). Here, we grew soybean under elevated [CO2 ] and imposed high- (+9°C) and low- (+5°C) intensity heat waves during key temperature-sensitive reproductive stages (R1, flowering; R5, pod-filling) to determine how elevated [CO2 ] will interact with heat waves to influence soybean yield. High-intensity heat waves, which resulted in canopy temperatures that exceeded optimal growth temperatures for soybean, reduced yield compared to ambient conditions even under elevated [CO2 ]. This was largely due to heat stress on reproductive processes, especially during R5. Low-intensity heat waves did not affect yields when applied during R1 but increased yields when applied during R5 likely due to relatively lower canopy temperatures and higher soil moisture, which uncoupled the negative effects of heating on cellular- and leaf-level processes from plant-level carbon assimilation. Modeling soybean yields based on carbon assimilation alone underestimated yield loss with high-intensity heat waves and overestimated yield loss with low-intensity heat waves, thus supporting the influence of direct heat stress on reproductive processes in determining yield. These results have implications for rain-fed cropping systems and point toward a climatic tipping point for soybean yield when future heat waves exceed optimum temperature.


Asunto(s)
Dióxido de Carbono , Glycine max , Calor , Fotosíntesis , Hojas de la Planta , Suelo
18.
Remote Sens Environ ; 231: 111176, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31534277

RESUMEN

Spectroscopy is becoming an increasingly powerful tool to alleviate the challenges of traditional measurements of key plant traits at the leaf, canopy, and ecosystem scales. Spectroscopic methods often rely on statistical approaches to reduce data redundancy and enhance useful prediction of physiological traits. Given the mechanistic uncertainty of spectroscopic techniques, genetic modification of plant biochemical pathways may affect reflectance spectra causing predictive models to lose power. The objectives of this research were to assess over two separate years, whether a predictive model can represent natural and imposed variation in leaf photosynthetic potential for different crop cultivars and genetically modified plants, to assess the interannual capabilities of a partial least square regression (PLSR) model, and to determine whether leaf N is a dominant driver of photosynthesis in PLSR models. In 2016, a PLSR analysis of reflectance spectra coupled with gas exchange data was used to build predictive models for photosynthetic parameters including maximum carboxylation rate of Rubisco (V c,max ), maximum electron transport rate (J max ) and percentage leaf nitrogen ([N]). The model was developed for wild type and genetically modified plants that represent a wide range of photosynthetic capacities. Results show that hyperspectral reflectance accurately predicted V c,max, J max and [N] for all plants measured in 2016. Applying these PLSR models to plants grown in 2017 resulted in a strong predictive ability relative to gas exchange measurements for V c,max, but not for J max, and not for genotypes unique to 2017. Building a new model including data collected in 2017 resulted in more robust predictions, with R2 increases of 17% for V c,max . and 13% J max . Plants generally have a positive correlation between leaf nitrogen and photosynthesis, however, tobacco with reduced Rubisco (SSuD) had significantly higher [N] despite much lower V c,max. The PLSR model was able to accurately predict both lower V c,max and higher leaf [N] for this genotype suggesting that the spectral based estimates of V c,max and leaf nitrogen [N] are independent. These results suggest that the PLSR model can be applied across years, but only to genotypes used to build the model and that the actual mechanism measured with the PLSR technique is not directly related to leaf [N]. The success of the leaf-scale analysis suggests that similar approaches may be successful at the canopy and ecosystem scales but to use these methods across years and between genotypes at any scale, application of accurately populated physical based models based on radiative transfer principles may be required.

19.
Plant Cell Environ ; 41(12): 2806-2820, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30055106

RESUMEN

Increases in atmospheric CO2 concentrations ([CO2 ]) and surface temperature are known to individually have effects on crop development and yield, but their interactive effects have not been adequately investigated under field conditions. We evaluated the impacts of elevated [CO2 ] with and without canopy warming as a function of development in soybean and maize using infrared heating arrays nested within free air CO2 enrichment plots over three growing seasons. Vegetative development accelerated in soybean with temperature plus elevated [CO2 ] resulting in higher node number. Reproductive development was delayed in soybean under elevated [CO2 ], but warming mitigated this delay. In maize, both vegetative and reproductive developments were accelerated by warming, whereas elevated [CO2 ] had no apparent effect on development. Treatment-induced changes in the leaf carbohydrates, dark respiration rate, morphological parameters, and environmental conditions accompanied the changes in plant development. We used two thermal models to investigate their ability to predict the observed development under warming and elevated [CO2 ]. Whereas the growing degree day model underestimated the thermal threshold to reach each developmental stage, the alternative process-based model used (ß function) was able to predict crop development under climate change conditions.


Asunto(s)
Dióxido de Carbono/metabolismo , Glycine max/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Metabolismo de los Hidratos de Carbono , Respiración de la Célula , Cambio Climático , Flores/crecimiento & desarrollo , Calor
20.
Ecol Appl ; 28(2): 557-572, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29280238

RESUMEN

The impact of grazing on C fluxes from pastures in subtropical and tropical regions and on the environment is uncertain, although these systems account for a substantial portion of global C storage. We investigated how cattle grazing influences net ecosystem CO2 and CH4 exchange in subtropical pastures using the eddy covariance technique. Measurements were made over several wet-dry seasonal cycles in a grazed pasture, and in an adjacent pasture during the first three years of grazer exclusion. Grazing increased soil wetness but did not affect soil temperature. By removing aboveground biomass, grazing decreased ecosystem respiration (Reco ) and gross primary productivity (GPP). As the decrease in Reco was larger than the reduction in GPP, grazing consistently increased the net CO2 sink strength of subtropical pastures (55, 219 and 187 more C/m2 in 2013, 2014, and 2015). Enteric ruminant fermentation and increased soil wetness due to grazers, increased total net ecosystem CH4 emissions in grazed relative to ungrazed pasture (27-80%). Unlike temperate, arid, and semiarid pastures, where differences in CH4 emissions between grazed and ungrazed pastures are mainly driven by enteric ruminant fermentation, our results showed that the effect of grazing on soil CH4 emissions can be greater than CH4 produced by cattle. Thus, our results suggest that the interactions between grazers and soil hydrology affecting soil CH4 emissions play an important role in determining the environmental impacts of this management practice in a subtropical pasture. Although grazing increased total net ecosystem CH4 emissions and removed aboveground biomass, it increased the net storage of C and decreased the global warming potential associated with C fluxes of pasture by increasing its net CO2 sink strength.


Asunto(s)
Ciclo del Carbono , Dióxido de Carbono/metabolismo , Calentamiento Global , Herbivoria , Metano/metabolismo , Agricultura , Animales , Bovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA