Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39062901

RESUMEN

Wound healing is a complex process that is still not fully understood despite extensive research. To address this, we aimed to design and characterize a standardized porcine model for the evaluation of wound healing, dressings, cell therapies, and pharmaceutical agents. Using a standardized approach, we examined the wound healing process in 1.2 mm-deep dermatome wounds at defined positions in 11 female pigs. Unlike previous studies that have only described/analyzed selected punch biopsies, we performed and described histological analyses along the complete wound length using quantitative morphometric methods. All animals remained fully healthy following surgery and showed no signs of infection. Our histopathological evaluation using a predetermined grading score and quantitative manual morphometry demonstrated the impact of different tissue sampling methods, sampling sites, and residual dermis thickness on wound healing. Our study presents a reproducible model for wound healing evaluation and demonstrates the usefulness of porcine models for assessing dermal and epidermal wound healing. The use of histological analyses over the complete wound length provides advantages over previous studies, leading to the possibility of a deeper understanding of the wound healing process. This model could potentially facilitate future research on novel wound dressings and local wound healing therapies.


Asunto(s)
Modelos Animales de Enfermedad , Cicatrización de Heridas , Animales , Porcinos , Femenino , Piel/patología , Piel/lesiones , Dermis/patología , Vendajes
2.
Biomedicines ; 12(8)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39200162

RESUMEN

The wound-healing process is a physiological response that begins after a disruption to the integrity of tissues present in the skin. To understand the intricacies involved in this process, many groups have tried to develop different in vitro models; however, the lack of a systemic response has, until this day, been the major barrier to the establishment of these models as the main study platform. Therefore, in vivo models are still the most common system for studying healing responses following different treatments, especially porcine models, which share several morphological similarities to the human skin. In this work, we developed a porcine excisional wound model and used semi-automated software as a strategy to generate quantitative morphometric results of healing responses by specific tissues and compartments. Our aim was to extract the most information from the model while producing reliable, reproducible, and standardized results. In order to achieve this, we established a 7-day treatment using a bacterial cellulose dressing as our standard for all the analyzed wounds. The thickness of the residual dermis under the wound (DUtW) bed was shown to influence the healing outcome, especially for the regeneration of epidermal tissue, including the wound closure rate. The analysis of the DUtW throughout the entire dorsal region of the animals opened up the possibility of establishing a map that will facilitate the experimental design of future works, increasing their standardization and reproducibility and ultimately reducing the number of animals needed. Thus, the developed model, together with the automated morphometric analysis approach used, offers the possibility to generate robust quantitative results with a rapid turnaround time while allowing the study of multiple extra morphometric parameters, creating a more holistic analysis.

3.
J Clin Med ; 11(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36431111

RESUMEN

Introduction: Pathogenic biofilms are an important factor for impaired wound healing, subsequently leading to chronic wounds. Nonsurgical treatment of chronic wound infections is limited to the use of conventional systemic antibiotics and antiseptics. Wound dressings based on bacterial nanocellulose (BNC) are considered a promising approach as an effective carrier for antiseptics. The aim of the present study was to investigate the antimicrobial activity of antiseptic-loaded BNC against in vitro biofilms. Materials and Methods: BNC was loaded with the commercially available antiseptics Prontosan® and Octenisept®. The silver-based dressing Aquacel®Ag Extra was used as a positive control. The biofilm efficacy of the loaded BNC sheets was tested against an in vitro 24-hour biofilm of Staphylococcus aureus and Candida albicans and a 48-hour biofilm of Pseudomonas aeruginosa. In vivo tests using a porcine excisional wound model was used to analyze the effect of a prolonged treatment with the antiseptics on the healing process. Results: We observed complete eradication of S. aureus biofilm in BNC loaded with Octenisept® and C. albicans biofilm for BNC loaded with Octenisept® or Prontosan®. Treatment with unloaded BNC also resulted in a statistically significant reduction in bacterial cell density of S. aureus compared to untreated biofilm. No difference on the wound healing outcome was observed for the wounds treated for seven days using BNC alone in comparison to BNC combined with Prontosan® or with Octenisept®. Conclusions: Based on these results, antiseptic-loaded BNC represents a promising and effective approach for the treatment of biofilms. Additionally, the prolonged exposure to the antiseptics does not affect the healing outcome. Prevention and treatment of chronic wound infections may be feasible with this novel approach and may even be superior to existing modalities.

4.
Biomedicines ; 10(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35740308

RESUMEN

A balanced and moist wound environment and surface increases the effect of various growth factors, cytokines, and chemokines, stimulating cell growth and wound healing. Considering this fact, we tested in vitro and in vivo water evaporation rates from the cellulose dressing epicitehydro when combined with different secondary dressings as well as the resulting wound healing efficacy in a porcine donor site model. The aim of this study was to evaluate how the different rates of water evaporation affected wound healing efficacy. To this end, epicitehydro primary dressing, in combination with different secondary dressing materials (cotton gauze, JELONET◊, AQUACEL® Extra ™, and OPSITE◊ Flexifix), was placed on 3 × 3 cm-sized dermatome wounds with a depth of 1.2 mm on the flanks of domestic pigs. The healing process was analyzed histologically and quantified by morphometry. High water evaporation rates by using the correct secondary dressing, such as cotton gauze, favored a better re-epithelialization in comparison with the low water evaporation resulting from an occlusive secondary dressing, which favored the formation of a new and intact dermal tissue that nearly fully replaced all the dermis that was removed during wounding. This newly available evidence may be of great benefit to clinical wound management.

5.
Burns ; 46(4): 918-927, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31653329

RESUMEN

BACKGROUND: Bacterial nanocellulose (BNC) is considered a promising carrier for various substances and novel approaches using BNC in combination with antiseptics are well documented. However, the difference in the molecular weight of these molecules influences their uptake by and release from BNC. Analysing the diffusion of standard molecules with different weight, e.g. dextrans, offers the possibility to investigate the mobility of various molecules. We aimed to test the use of BNC regarding uptake and release of different standard molecules as well as two commercially available antiseptics for possible applications in future wound dressings. MATERIAL AND METHODS: Diffusion profiles, uptake and release of three FITC-dextran molecules differing in weight as well as octenidine (Octenisept®) and povidone-iodine (Betaisodona®)-based antiseptics were tested with BNC-based wound dressings. Furthermore, the antiseptic efficacy of BNC in combination with antiseptics against Staphylococcus aureus was tested. RESULTS: Uptake and release capacity for FITC-dextran molecules showed a molecular weight-dependent mobility from BNC into an agarose gel. The loading capacity of BNC was also inversely proportional to the molecular weight of the antiseptics. The release test for octenidine showed a sustained and prolonged delivery into a solid matrix, whereas povidone-iodine was released faster. Both antiseptic solutions combined with BNC showed a good dose-dependent efficacy against S. aureus. CONCLUSION: Results obtained from the mobility of FITC-dextran molecules in the BNC matrix could open possible applications for the combination of BNC with other molecules for medical applications. Combination of both tested antiseptics with BNC showed to be an efficient approach to control bacterial infections.


Asunto(s)
Antiinfecciosos Locales/metabolismo , Vendajes , Quemaduras/terapia , Celulosa/metabolismo , Povidona Yodada/metabolismo , Piridinas/metabolismo , Infección de Heridas/prevención & control , Antiinfecciosos Locales/administración & dosificación , Dextranos/metabolismo , Portadores de Fármacos/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Humanos , Iminas , Peso Molecular , Nanoestructuras , Povidona Yodada/administración & dosificación , Piridinas/administración & dosificación , Heridas y Lesiones/terapia
6.
Burns ; 46(8): 1924-1932, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32660829

RESUMEN

BACKGROUND: Burn wound progression is a significant problem as burns initially thought to be superficial can actually become full thickness over time. Cooling is an efficient method to reduce burn wound conversion. However, if the cooling agent is below room temperature, depending on the wound size the patient is at risk of hypothermia. Additionally, tissue perfusion is reduced leading to an aggravation of burn wound progression. We investigated if wound dressings based on non-pre-cooled bacterial nanocellulose (BNC) with a high water content cool a burn just by evaporation and reduce the intradermal damages in the skin. MATERIAL AND METHODS: In a human ex-vivo model, skin explants underwent contact burns using a 100 °C hot steel block. The burned areas were divided into two groups of which one was cooled with a BNC-based wound dressing. Intradermal temperature probes measured temperature in cooled and uncooled burn sites over 24 h. For histological assessments of the burned areas biopsies were taken at different time points. High mobility group box-1 (HMBG1) staining served as marker for cell vitality and necrosis in the different skin layers. RESULTS: Intradermal temperature measurement showed that application of the BNC-based wound dressing reduced temperature significantly in burned skin. This cooling effect resulted in a maximum temperature difference of 6.4 ± 1.9 °C and a significant mean reduction of the area under the curve in the first hour after burn of 62% (p < 0.0001). The histological results showed less necrosis and less dermal-epidermal separation in the cooled areas. The HMGB1 staining revealed more vital cells in the cooled group than in the uncooled group. CONCLUSION: Based on our results, BNC-based wound dressings cool a burn. Intradermal temperature as well as thermal damage of the tissue was reduced. The tested BNC-based wound dressing can be used without pre-cooling to cool a burn as well as to reduce the burn BNC-based wound progression through its evaporation cooling effect.


Asunto(s)
Temperatura Corporal/efectos de los fármacos , Quemaduras/tratamiento farmacológico , Modelos Biológicos , Cicatrización de Heridas/fisiología , Área Bajo la Curva , Austria , Quemaduras/complicaciones , Humanos , Curva ROC , Cicatrización de Heridas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA