Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Chem Inf Model ; 61(9): 4224-4235, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34387990

RESUMEN

With the rapidly evolving SARS-CoV-2 variants of concern, there is an urgent need for the discovery of further treatments for the coronavirus disease (COVID-19). Drug repurposing is one of the most rapid strategies for addressing this need, and numerous compounds have already been selected for in vitro testing by several groups. These have led to a growing database of molecules with in vitro activity against the virus. Machine learning models can assist drug discovery through prediction of the best compounds based on previously published data. Herein, we have implemented several machine learning methods to develop predictive models from recent SARS-CoV-2 in vitro inhibition data and used them to prioritize additional FDA-approved compounds for in vitro testing selected from our in-house compound library. From the compounds predicted with a Bayesian machine learning model, lumefantrine, an antimalarial was selected for testing and showed limited antiviral activity in cell-based assays while demonstrating binding (Kd 259 nM) to the spike protein using microscale thermophoresis. Several other compounds which we prioritized have since been tested by others and were also found to be active in vitro. This combined machine learning and in vitro testing approach can be expanded to virtually screen available molecules with predicted activity against SARS-CoV-2 reference WIV04 strain and circulating variants of concern. In the process of this work, we have created multiple iterations of machine learning models that can be used as a prioritization tool for SARS-CoV-2 antiviral drug discovery programs. The very latest model for SARS-CoV-2 with over 500 compounds is now freely available at www.assaycentral.org.


Asunto(s)
COVID-19 , SARS-CoV-2 , Teorema de Bayes , Humanos , Aprendizaje Automático , Simulación del Acoplamiento Molecular
2.
Artículo en Inglés | MEDLINE | ID: mdl-30061280

RESUMEN

Zika virus (ZIKV) has been linked to the development of microcephaly in newborns, as well as Guillain-Barré syndrome. There are currently no drugs available to treat ZIKV infection, and accordingly, there is an unmet medical need for the discovery of new therapies. High-throughput drug screening efforts focusing on indirect readouts of cell viability are prone to a higher frequency of false positives in cases where the virus is viable in the cell but the cytopathic effect (CPE) is reduced or delayed. Here, we describe a fast and label-free phenotypic high-content imaging assay to detect cells affected by the virus-induced CPE using automated imaging and analysis. Protection from the CPE correlates with a decrease in viral antigen production, as observed by immunofluorescence. We trained our assay using a collection of nucleoside analogues with activity against ZIKV; the previously reported antiviral activities of 2'-C-methylribonucleosides and ribavirin against the Zika virus in Vero cells were confirmed using our developed method. To validate the ability of our assay to reveal new anti-ZIKV compounds, we profiled a novel library of 24 natural product derivatives and found compound 1 to be an inhibitor of the ZIKV-induced cytopathic effect; the activity of the compound was confirmed in human fetal neural stem cells (NSCs). The described technique can be easily leveraged as a primary screening assay for profiling of the activities of large compound libraries against ZIKV and can be expanded to other ZIKV strains and other cell lines displaying morphological changes upon ZIKV infection.


Asunto(s)
Antivirales/farmacología , Virus Zika/efectos de los fármacos , Animales , Antivirales/química , Chlorocebus aethiops , Espectroscopía de Resonancia Magnética , Células Vero , Infección por el Virus Zika/virología
3.
Bioorg Med Chem ; 26(8): 1713-1726, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29478802

RESUMEN

Reverse transcriptase (RT) is responsible for replicating the HIV-1 genome and is a validated therapeutic target for the treatment of HIV infections. During each cycle of the RT-catalyzed DNA polymerization process, inorganic pyrophosphate is released as the by-product of nucleotide incorporation. Small molecules were identified that act as bioisosteres of pyrophosphate and can selectively freeze the catalytic cycle of HIV-1 RT at the pre-translocated stage of the DNA- or RNA-template-primer-enzyme complex.


Asunto(s)
Difosfatos/farmacología , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Inhibidores de la Transcriptasa Inversa/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Biocatálisis , ADN Viral/efectos de los fármacos , ADN Viral/genética , Difosfatos/síntesis química , Difosfatos/química , Relación Dosis-Respuesta a Droga , Transcriptasa Inversa del VIH/genética , Transcriptasa Inversa del VIH/metabolismo , Estructura Molecular , Polimerizacion/efectos de los fármacos , Inhibidores de la Transcriptasa Inversa/síntesis química , Inhibidores de la Transcriptasa Inversa/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
4.
Proc Natl Acad Sci U S A ; 112(11): 3475-80, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25733891

RESUMEN

Polymerases have a structurally highly conserved negatively charged amino acid motif that is strictly required for Mg(2+) cation-dependent catalytic incorporation of (d)NTP nucleotides into nucleic acids. Based on these characteristics, a nucleoside monophosphonate scaffold, α-carboxy nucleoside phosphonate (α-CNP), was designed that is recognized by a variety of polymerases. Kinetic, biochemical, and crystallographic studies with HIV-1 reverse transcriptase revealed that α-CNPs mimic the dNTP binding through a carboxylate oxygen, two phosphonate oxygens, and base-pairing with the template. In particular, the carboxyl oxygen of the α-CNP acts as the potential equivalent of the α-phosphate oxygen of dNTPs and two oxygens of the phosphonate group of the α-CNP chelate Mg(2+), mimicking the chelation by the ß- and γ-phosphate oxygens of dNTPs. α-CNPs (i) do not require metabolic activation (phosphorylation), (ii) bind directly to the substrate-binding site, (iii) chelate one of the two active site Mg(2+) ions, and (iv) reversibly inhibit the polymerase catalytic activity without being incorporated into nucleic acids. In addition, α-CNPs were also found to selectively interact with regulatory (i.e., allosteric) Mg(2+)-dNTP-binding sites of nucleos(t)ide-metabolizing enzymes susceptible to metabolic regulation. α-CNPs represent an entirely novel and broad technological platform for the development of specific substrate active- or regulatory-site inhibitors with therapeutic potential.


Asunto(s)
Nucleósidos/farmacología , Nucleótidos/farmacología , Organofosfonatos/farmacología , Regulación Alostérica/efectos de los fármacos , Secuencia de Bases , Biocatálisis/efectos de los fármacos , Extractos Celulares , ADN Polimerasa Dirigida por ADN/metabolismo , Farmacorresistencia Viral/efectos de los fármacos , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Transcriptasa Inversa del VIH/química , Transcriptasa Inversa del VIH/metabolismo , Células HeLa , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Nucleósidos/química , Nucleótidos/química , Organofosfonatos/química , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de la Transcriptasa Inversa/farmacología , Estereoisomerismo
5.
Anal Chem ; 89(19): 10414-10421, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28892370

RESUMEN

Trypanosoma cruzi parasites are the causative agents of Chagas disease, a leading infectious form of heart failure whose pathogenesis is still not fully characterized. In this work, we applied untargeted liquid chromatography-tandem mass spectrometry to heart sections from T. cruzi-infected and uninfected mice. We combined molecular networking and three-dimensional modeling to generate chemical cartographical heart models. This approach revealed for the first time preferential parasite localization to the base of the heart and regiospecific distributions of nucleoside derivatives and eicosanoids, which we correlated to tissue-damaging immune responses. We further detected novel cardiac chemical signatures related to the severity and ultimate outcome of the infection. These signatures included differential representation of higher- vs lower-molecular-weight carnitine and phosphatidylcholine family members in specific cardiac regions of mice infected with lethal or nonlethal T. cruzi strains and doses. Overall, this work provides new insights into Chagas disease pathogenesis and presents an analytical chemistry approach that can be broadly applied to the study of host-microbe interactions.


Asunto(s)
Corazón/parasitología , Miocardio/química , Espectrometría de Masas en Tándem , Trypanosoma cruzi/patogenicidad , Animales , Área Bajo la Curva , Carnitina/química , Carnitina/metabolismo , Enfermedad de Chagas/diagnóstico , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/veterinaria , Cromatografía Líquida de Alta Presión , Eicosanoides/química , Eicosanoides/metabolismo , Masculino , Ratones , Ratones Endogámicos C3H , Miocardio/patología , Nucleósidos/análogos & derivados , Nucleósidos/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Análisis de Componente Principal , Curva ROC
7.
J Biol Chem ; 290(3): 1474-84, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25355312

RESUMEN

The pyrophosphate mimic and broad spectrum antiviral phosphonoformic acid (PFA, foscarnet) was shown to freeze the pre-translocational state of the reverse transcriptase (RT) complex of the human immunodeficiency virus type 1 (HIV-1). However, PFA lacks a specificity domain, which is seen as a major reason for toxic side effects associated with the clinical use of this drug. Here, we studied the mechanism of inhibition of HIV-1 RT by the 4-chlorophenylhydrazone of mesoxalic acid (CPHM) and demonstrate that this compound also blocks RT translocation. Hot spots for inhibition with PFA or CPHM occur at template positions with a bias toward pre-translocation. Mutations at active site residue Asp-185 compromise binding of both compounds. Moreover, divalent metal ions are required for the formation of ternary complexes with either of the two compounds. However, CPHM contains both an anchor domain that likely interacts with the catalytic metal ions and a specificity domain. Thus, although the inhibitor binding sites may partly overlap, they are not identical. The K65R mutation in HIV-1 RT, which reduces affinity to PFA, increases affinity to CPHM. Details with respect to the binding sites of the two inhibitors are provided on the basis of mutagenesis studies, structure-activity relationship analyses with newly designed CPHM derivatives, and in silico docking experiments. Together, these findings validate the pre-translocated complex of HIV-1 RT as a specific target for the development of novel classes of RT inhibitors.


Asunto(s)
Transcriptasa Inversa del VIH/antagonistas & inhibidores , VIH-1/enzimología , Hidrazonas/química , Malonatos/química , Inhibidores de la Transcriptasa Inversa/química , Antirretrovirales/química , Catálisis , Dominio Catalítico , Evaluación Preclínica de Medicamentos , Iones , Metales/química , Modelos Moleculares , Mutagénesis , Mutación , Unión Proteica , Multimerización de Proteína , Ribonucleasa H/química , Relación Estructura-Actividad
8.
J Biol Chem ; 289(20): 14399-411, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24692556

RESUMEN

The hepatitis C virus (HCV) non-structural protein 5B (NS5B) is an RNA-dependent RNA polymerase that is essentially required for viral replication. Although previous studies revealed important properties of static NS5B-RNA complexes, the nature and relevance of dynamic interactions have yet to be elucidated. Here, we devised a single molecule Förster Resonance Energy Transfer (SM-FRET) assay to monitor temporal changes upon binding of NS5B to surface immobilized RNA templates. The data show enzyme association-dissociation events that occur within the time resolution of our setup as well as FRET-fluctuations in association with stable binary complexes that extend over prolonged periods of time. Fluctuations are shown to be dependent on the length of the RNA substrate, and enzyme concentration. Mutations in close proximity to the template entrance (K98E, K100E), and in the center of the RNA binding channel (R394E), reduce both the population of RNA-bound enzyme and the fluctuations associated to the binary complex. Similar observations are reported with an allosteric nonnucleoside NS5B inhibitor. Our assay enables for the first time the visualization of association-dissociation events of HCV-NS5B with RNA, and also the direct monitoring of the interaction between HCV NS5B, its RNA template, and finger loop inhibitors. We observe both a remarkably low dissociation rate for wild type HCV NS5B, and a highly dynamic enzyme-RNA binary complex. These results provide a plausible mechanism for formation of a productive binary NS5B-RNA complex, here NS5B slides along the RNA template facilitating positioning of its 3' terminus at the enzyme active site.


Asunto(s)
Hepacivirus/enzimología , ARN Viral/metabolismo , Proteínas no Estructurales Virales/metabolismo , Secuencia de Bases , Bencimidazoles/farmacología , Transferencia Resonante de Energía de Fluorescencia , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , ARN Viral/química , ARN Viral/genética , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética
9.
J Biol Chem ; 288(24): 17336-46, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-23598281

RESUMEN

Nucleotide-competing reverse transcriptase inhibitors were shown to bind reversibly to the nucleotide-binding site of the reverse transcriptase (RT) enzyme of human immunodeficiency virus type 1 (HIV-1). Here, we show that the presence of ATP can enhance the inhibitory effects of the prototype compound INDOPY-1. We employed a combination of cell-free and cell-based assays to shed light on the underlying molecular mechanism. Binding studies and site-specific footprinting experiments demonstrate the existence of a stable quaternary complex with HIV-1 RT, its nucleic acid substrate, INDOPY-1, and ATP. The complex is frozen in the post-translocational state that usually accommodates the incoming nucleotide substrate. Structure-activity relationship studies show that both the base and the phosphate moieties of ATP are elements that play important roles in enhancing the inhibitory effects of INDOPY-1. In vitro susceptibility measurements with mutant viruses containing amino acid substitutions K70G, V75T, L228R, and K219R in the putative ATP binding pocket revealed unexpectedly a hypersusceptible phenotype with respect to INDOPY-1. The same mutational cluster was previously shown to reduce susceptibility to the pyrophosphate analog phosphonoformic acid. However, in the absence of INDOPY-1, ATP can bind and act as a pyrophosphate donor under conditions that favor formation of the pre-translocated RT complex. We therefore conclude that the mutant enzyme facilitates simultaneous binding of INDOPY-1 and ATP to the post-translocated complex. Based on these data, we propose a model in which the bound ATP traps the inhibitor, which, in turn, compromises its dissociation.


Asunto(s)
Adenosina Trifosfato/química , Fármacos Anti-VIH/química , Transcriptasa Inversa del VIH/química , VIH-1/enzimología , Indoles/química , Nitrilos/química , Piridonas/química , ADN Viral/biosíntesis , ADN Viral/química , Estabilidad de Enzimas , Foscarnet/química , Células HEK293 , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Humanos , Unión Proteica , Relación Estructura-Actividad
10.
ACS Omega ; 7(9): 7675-7682, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35284725

RESUMEN

Safe and effective treatments for Chagas disease, a potentially fatal parasitic infection associated with cardiac and gastrointestinal pathology and caused by the kinetoplastid parasite Trypanosoma cruzi, have yet to be developed. Benznidazole and nifurtimox, which are currently the only available drugs against T. cruzi, are associated with severe adverse effects and questionable efficacy in the late stage of the disease. Natural products have proven to be a rich source of new chemotypes for other infectious agents. We utilized a microscopy-based high-throughput phenotypic screen to identify inhibitors of T. cruzi from a library of natural product samples obtained from fungi procured through a Citizen Science Soil Collection Program (https://whatsinyourbackyard.org/) and the Great Lakes (USA) benthic environment. We identified five leucinostatins (A, B, F, NPDG C, and NPDG D) as potent inhibitors of the intracellular amastigote form of T. cruzi. Leucinostatin B also showed in vivo suppression of T. cruzi in a mouse model of Chagas disease. Given prior reports that leucinostatins A and B have antiparasitic activity against the related kinetoplastid Trypanosoma brucei, our findings suggest a potential cross-trypanocidal compound class and provide a platform for the further chemical derivatization of a potent chemical scaffold against T. cruzi.

11.
Cancer Res ; 82(3): 377-390, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34903607

RESUMEN

Glioblastoma is the most prevalent primary malignant brain tumor in adults and is characterized by poor prognosis and universal tumor recurrence. Effective glioblastoma treatments are lacking, in part due to somatic mutations and epigenetic reprogramming that alter gene expression and confer drug resistance. To investigate recurrently dysregulated genes in glioblastoma, we interrogated allele-specific expression (ASE), the difference in expression between two alleles of a gene, in glioblastoma stem cells (GSC) derived from 43 patients. A total of 118 genes were found with recurrent ASE preferentially in GSCs compared with normal tissues. These genes were enriched for apoptotic regulators, including schlafen family member 11 (SLFN11). Loss of SLFN11 gene expression was associated with aberrant promoter methylation and conferred resistance to chemotherapy and PARP inhibition. Conversely, low SLFN11 expression rendered GSCs susceptible to the oncolytic flavivirus Zika. This discovery effort based upon ASE revealed novel points of vulnerability in GSCs, suggesting a potential alternative treatment strategy for chemotherapy-resistant glioblastoma. SIGNIFICANCE: Assessing allele-specific expression reveals genes with recurrent cis-regulatory changes that are enriched in glioblastoma stem cells, including SLFN11, which modulates chemotherapy resistance and susceptibility to the oncolytic Zika virus.


Asunto(s)
Estudios de Asociación Genética/métodos , Glioblastoma/genética , Glioblastoma/terapia , Alelos , Línea Celular Tumoral , Humanos
12.
Cancer Discov ; 12(2): 502-521, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34615656

RESUMEN

Glioblastoma (GBM) is the most lethal primary brain cancer characterized by therapeutic resistance, which is promoted by GBM stem cells (GSC). Here, we interrogated gene expression and whole-genome CRISPR/Cas9 screening in a large panel of patient-derived GSCs, differentiated GBM cells (DGC), and neural stem cells (NSC) to identify master regulators of GSC stemness, revealing an essential transcription state with increased RNA polymerase II-mediated transcription. The YY1 and transcriptional CDK9 complex was essential for GSC survival and maintenance in vitro and in vivo. YY1 interacted with CDK9 to regulate transcription elongation in GSCs. Genetic or pharmacologic targeting of the YY1-CDK9 complex elicited RNA m6A modification-dependent interferon responses, reduced regulatory T-cell infiltration, and augmented efficacy of immune checkpoint therapy in GBM. Collectively, these results suggest that YY1-CDK9 transcription elongation complex defines a targetable cell state with active transcription, suppressed interferon responses, and immunotherapy resistance in GBM. SIGNIFICANCE: Effective strategies to rewire immunosuppressive microenvironment and enhance immunotherapy response are still lacking in GBM. YY1-driven transcriptional elongation machinery represents a druggable target to activate interferon response and enhance anti-PD-1 response through regulating the m6A modification program, linking epigenetic regulation to immunomodulatory function in GBM.This article is highlighted in the In This Issue feature, p. 275.


Asunto(s)
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Inmunoterapia , Animales , Neoplasias Encefálicas/genética , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Humanos , Masculino , Ratones , Persona de Mediana Edad , Células Madre Neoplásicas/metabolismo , Microambiente Tumoral
13.
J Med Chem ; 64(15): 11267-11287, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34288674

RESUMEN

Cysteine proteases comprise an important class of drug targets, especially for infectious diseases such as Chagas disease (cruzain) and COVID-19 (3CL protease, cathepsin L). Peptide aldehydes have proven to be potent inhibitors for all of these proteases. However, the intrinsic, high electrophilicity of the aldehyde group is associated with safety concerns and metabolic instability, limiting the use of aldehyde inhibitors as drugs. We have developed a novel class of self-masked aldehyde inhibitors (SMAIs) for cruzain, the major cysteine protease of the causative agent of Chagas disease-Trypanosoma cruzi. These SMAIs exerted potent, reversible inhibition of cruzain (Ki* = 18-350 nM) while apparently protecting the free aldehyde in cell-based assays. We synthesized prodrugs of the SMAIs that could potentially improve their pharmacokinetic properties. We also elucidated the kinetic and chemical mechanism of SMAIs and applied this strategy to the design of anti-SARS-CoV-2 inhibitors.


Asunto(s)
Aldehídos/química , Tratamiento Farmacológico de COVID-19 , Enfermedad de Chagas/tratamiento farmacológico , Inhibidores de Cisteína Proteinasa/uso terapéutico , SARS-CoV-2/enzimología , Trypanosoma cruzi/enzimología , Aldehídos/metabolismo , Aldehídos/farmacología , Catepsina L/antagonistas & inhibidores , Catepsina L/metabolismo , Cisteína Endopeptidasas/metabolismo , Proteasas de Cisteína/metabolismo , Inhibidores de Cisteína Proteinasa/química , Diseño de Fármacos , Humanos , Cinética , Modelos Moleculares , Estructura Molecular , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , SARS-CoV-2/efectos de los fármacos , Relación Estructura-Actividad , Trypanosoma cruzi/efectos de los fármacos
14.
Microorganisms ; 8(4)2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32224991

RESUMEN

Chagas disease, caused by the kinetoplastid parasite Trypanosoma cruzi, affects between 6 and 7 million people worldwide, with an estimated 300,000 to 1 million of these cases in the United States. In the chronic phase of infection, T. cruzi can cause severe gastrointestinal and cardiac disease, which can be fatal. Currently, only benznidazole is clinically approved by the FDA for pediatric use to treat this infection in the USA. Toxicity associated with this compound has driven the search for new anti-Chagas agents. Drug repurposing is a particularly attractive strategy for neglected diseases, as pharmacological parameters and toxicity are already known for these compounds, reducing costs and saving time in the drug development pipeline. Here, we screened 7680 compounds from the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) library, a collection of drugs or compounds with confirmed clinical safety, against T. cruzi. We identified seven compounds of interest with potent in vitro activity against the parasite with a therapeutic index of 10 or greater, including the previously unreported activity of the antiherpetic compound 348U87. These results provide the framework for further development of new T. cruzi leads that can potentially move quickly to the clinic.

15.
J Med Chem ; 63(2): 470-489, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31549836

RESUMEN

Zika virus is an emerging flavivirus that causes the neurodevelopmental congenital Zika syndrome and that has been linked to the neuroinflammatory Guillain-Barré syndrome. The absence of a vaccine or a clinically approved drug to treat the disease combined with the likelihood that another outbreak will occur in the future defines an unmet medical need. Several promising drug candidate molecules have been reported via repurposing studies, high-throughput compound library screening, and de novo design in the short span of a few years. Intense research activity in this area has occurred in response to the World Health Organization declaration of a Public Health Emergency of International Concern on February 1, 2016. In this Perspective, the authors review the emergence of Zika virus, the biology of its replication, targets for therapeutic intervention, target product profile, and current drug development initiatives.


Asunto(s)
Antivirales/uso terapéutico , Infección por el Virus Zika/tratamiento farmacológico , Virus Zika/efectos de los fármacos , Animales , Desarrollo de Medicamentos , Descubrimiento de Drogas , Humanos , Vacunas Virales , Infección por el Virus Zika/patología , Infección por el Virus Zika/prevención & control
16.
Metabolites ; 10(3)2020 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-32121389

RESUMEN

Soil covers most of Earth's continental surface and is fundamental to life-sustaining processes such as agriculture. Given its rich biodiversity, soil is also a major source for natural product drug discovery from soil microorganisms. However, the study of the soil small molecule profile has been challenging due to the complexity and heterogeneity of this matrix. In this study, we implemented high-resolution liquid chromatography-tandem mass spectrometry and large-scale data analysis tools such as molecular networking to characterize the relative contributions of city, state and regional processes on backyard soil metabolite composition, in 188 soil samples collected from 14 USA States, representing five USA climate regions. We observed that region, state and city of collection all influence the overall soil metabolite profile. However, many metabolites were only detected in unique sites, indicating that uniquely local phenomena also influence the backyard soil environment, with both human-derived and naturally-produced (plant-derived, microbially-derived) metabolites identified. Overall, these findings are helping to define the processes that shape the backyard soil metabolite composition, while also highlighting the need for expanded metabolomic studies of this complex environment.

17.
J Med Chem ; 63(6): 3298-3316, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32125159

RESUMEN

Cruzain, an essential cysteine protease of the parasitic protozoan, Trypanosoma cruzi, is an important drug target for Chagas disease. We describe here a new series of reversible but time-dependent inhibitors of cruzain, composed of a dipeptide scaffold appended to vinyl heterocycles meant to provide replacements for the irreversible reactive "warheads" of vinyl sulfone inactivators of cruzain. Peptidomimetic vinyl heterocyclic inhibitors (PVHIs) containing Cbz-Phe-Phe/homoPhe scaffolds with vinyl-2-pyrimidine, vinyl-2-pyridine, and vinyl-2-(N-methyl)-pyridine groups conferred reversible, time-dependent inhibition of cruzain (Ki* = 0.1-0.4 µM). These cruzain inhibitors exhibited moderate to excellent selectivity versus human cathepsins B, L, and S and showed no apparent toxicity to human cells but were effective in cell cultures of Trypanosoma brucei brucei (EC50 = 1-15 µM) and eliminated T. cruzi in infected murine cardiomyoblasts (EC50 = 5-8 µM). PVHIs represent a new class of cruzain inhibitors that could progress to viable candidate compounds to treat Chagas disease and human sleeping sickness.


Asunto(s)
Inhibidores de Cisteína Proteinasa/farmacología , Peptidomiméticos/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Tripanocidas/farmacología , Compuestos de Vinilo/farmacología , Animales , Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/metabolismo , Diseño de Fármacos , Pruebas de Enzimas , Humanos , Cinética , Ratones , Simulación del Acoplamiento Molecular , Mioblastos Cardíacos/efectos de los fármacos , Peptidomiméticos/síntesis química , Peptidomiméticos/metabolismo , Unión Proteica , Proteínas Protozoarias/metabolismo , Piridinas/síntesis química , Piridinas/metabolismo , Piridinas/farmacología , Pirimidinas/síntesis química , Pirimidinas/metabolismo , Pirimidinas/farmacología , Tripanocidas/síntesis química , Tripanocidas/metabolismo , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Compuestos de Vinilo/síntesis química , Compuestos de Vinilo/metabolismo
18.
Cancer Discov ; 10(11): 1722-1741, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32703768

RESUMEN

Meningiomas are the most common primary intracranial tumor with current classification offering limited therapeutic guidance. Here, we interrogated meningioma enhancer landscapes from 33 tumors to stratify patients based upon prognosis and identify novel meningioma-specific dependencies. Enhancers robustly stratified meningiomas into three biologically distinct groups (adipogenesis/cholesterol, mesodermal, and neural crest) distinguished by distinct hormonal lineage transcriptional regulators. Meningioma landscapes clustered with intrinsic brain tumors and hormonally responsive systemic cancers with meningioma subgroups, reflecting progesterone or androgen hormonal signaling. Enhancer classification identified a subset of tumors with poor prognosis, irrespective of histologic grading. Superenhancer signatures predicted drug dependencies with superior in vitro efficacy to treatment based upon the NF2 genomic profile. Inhibition of DUSP1, a novel and druggable meningioma target, impaired tumor growth in vivo. Collectively, epigenetic landscapes empower meningioma classification and identification of novel therapies. SIGNIFICANCE: Enhancer landscapes inform prognostic classification of aggressive meningiomas, identifying tumors at high risk of recurrence, and reveal previously unknown therapeutic targets. Druggable dependencies discovered through epigenetic profiling potentially guide treatment of intractable meningiomas.This article is highlighted in the In This Issue feature, p. 1611.


Asunto(s)
Epigenómica/métodos , Meningioma/genética , Humanos , Meningioma/patología , Pronóstico
19.
ACS Med Chem Lett ; 11(3): 249-257, 2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32184953

RESUMEN

Utilizing a target repurposing and parasite-hopping approach, we tested a previously reported library of compounds that were active against Trypanosoma brucei, plus 31 new compounds, against a variety of protozoan parasites including Trypanosoma cruzi, Leishmania major, Leishmania donovani, and Plasmodium falciparum. This led to the discovery of several compounds with submicromolar activities and improved physicochemical properties that are early leads toward the development of chemotherapeutic agents against kinetoplastid diseases and malaria.

20.
Cell Stem Cell ; 26(2): 187-204.e10, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31956038

RESUMEN

Zika virus (ZIKV) causes microcephaly by killing neural precursor cells (NPCs) and other brain cells. ZIKV also displays therapeutic oncolytic activity against glioblastoma (GBM) stem cells (GSCs). Here we demonstrate that ZIKV preferentially infected and killed GSCs and stem-like cells in medulloblastoma and ependymoma in a SOX2-dependent manner. Targeting SOX2 severely attenuated ZIKV infection, in contrast to AXL. As mechanisms of SOX2-mediated ZIKV infection, we identified inverse expression of antiviral interferon response genes (ISGs) and positive correlation with integrin αv (ITGAV). ZIKV infection was disrupted by genetic targeting of ITGAV or its binding partner ITGB5 and by an antibody specific for integrin αvß5. ZIKV selectively eliminated GSCs from species-matched human mature cerebral organoids and GBM surgical specimens, which was reversed by integrin αvß5 inhibition. Collectively, our studies identify integrin αvß5 as a functional cancer stem cell marker essential for GBM maintenance and ZIKV infection, providing potential brain tumor therapy.


Asunto(s)
Glioblastoma , Células-Madre Neurales , Infección por el Virus Zika , Virus Zika , Humanos , Receptores de Vitronectina , Factores de Transcripción SOXB1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA