Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 193(4): 2691-2710, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37610244

RESUMEN

Fusarium head blight (FHB) of barley (Hordeum vulgare) causes yield losses and accumulation of trichothecene mycotoxins (e.g. deoxynivalenol [DON]) in grains. Glucosylation of DON to the nontoxic DON-3-O-glucoside (D3G) is catalyzed by UDP-glucosyltransferases (UGTs), such as barley UGT13248. We explored the natural diversity of UGT13248 in 496 barley accessions and showed that all carried potential functional alleles of UGT13248, as no genotypes showed strongly increased seedling sensitivity to DON. From a TILLING population, we identified 2 mutant alleles (T368I and H369Y) that, based on protein modeling, likely affect the UDP-glucose binding of UGT13248. In DON feeding experiments, DON-to-D3G conversion was strongly reduced in spikes of these mutants compared to controls, and plants overexpressing UGT13248 showed increased resistance to DON and increased DON-to-D3G conversion. Moreover, field-grown plants carrying the T368I or H369Y mutations inoculated with Fusarium graminearum showed increased FHB disease severity and reduced D3G production. Barley is generally considered to have type II resistance that limits the spread of F. graminearum from the infected spikelet to adjacent spikelets. Point inoculation experiments with F. graminearum showed increased infection spread in T368I and H369Y across the spike compared to wild type, while overexpression plants showed decreased spread of FHB symptoms. Confocal microscopy revealed that F. graminearum spread to distant rachis nodes in T368I and H369Y mutants but was arrested at the rachis node of the inoculated spikelet in wild-type plants. Taken together, our data reveal that UGT13248 confers type II resistance to FHB in barley via conjugation of DON to D3G.


Asunto(s)
Fusarium , Hordeum , Hordeum/genética , Hordeum/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Uridina Difosfato/metabolismo , Enfermedades de las Plantas/genética
2.
Anal Bioanal Chem ; 416(5): 1199-1215, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177453

RESUMEN

Carboxylic acids (CAs) are key players in human and animal metabolism. As they are hardly retained under reversed-phase liquid chromatography (RP-LC) conditions in their native form, derivatization is an option to make them accessible to RP-LC and simultaneously increase their response for mass spectrometric detection. In this work, two RP-LC tandem mass spectrometry-based methods using aniline or 3-nitrophenylhydrazine (3-NPH) as derivatization agents were compared with respect to several factors including completeness of derivatization, apparent recoveries (RAs) in both cow feces and ruminal fluid, and concentrations obtained in feces and ruminal fluid of cows. Anion exchange chromatography coupled to high-resolution mass spectrometry (AIC-HR-MS) served as reference method. Derivatization efficiencies were close to 100% for 3-NPH derivatization but variable (20-100%) and different in solvent solutions and matrix extracts for aniline derivatization. Likewise, average RAs of 13C-labeled short-chain fatty acids as internal standards were around 100% for 3-NPH derivatization but only 45% for aniline derivatization. Quantification of CAs in feces and ruminal fluid of cows initially fed a forage-only diet and then transitioned to a 65% high-grain diet which yielded similar concentrations for 3-NPH derivatization and AIC-HR-MS, but concentrations determined by aniline derivatization were on average five times lower. For these reasons, derivatization with aniline is not recommended for the quantitative analysis of CAs in animal samples.


Asunto(s)
Ácidos Carboxílicos , Espectrometría de Masas en Tándem , Humanos , Femenino , Animales , Bovinos , Cromatografía Liquida/métodos , Ácidos Carboxílicos/química , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida con Espectrometría de Masas , Cromatografía Líquida de Alta Presión/métodos , Compuestos de Anilina
3.
Appl Environ Microbiol ; 89(12): e0121123, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38054733

RESUMEN

IMPORTANCE: Fumonisins can cause diseases in animals and humans consuming Fusarium-contaminated food or feed. The search for microbes capable of fumonisin degradation, or for enzymes that can detoxify fumonisins, currently relies primarily on chemical detection methods. Our constructed fumonisin B1-sensitive yeast strain can be used to phenotypically detect detoxification activity and should be useful in screening for novel fumonisin resistance genes and to elucidate fumonisin metabolism and resistance mechanisms in fungi and plants, and thereby, in the long term, help to mitigate the threat of fumonisins in feed and food.


Asunto(s)
Fumonisinas , Fusarium , Humanos , Animales , Fumonisinas/toxicidad , Fumonisinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alimentación Animal , Fusarium/genética , Fusarium/metabolismo
4.
J Biol Chem ; 296: 100424, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33600798

RESUMEN

Brassinosteroids (BRs) are steroid hormones of plants that coordinate fundamental growth and development processes. Their homeostasis is controlled by diverse means, including glucosylation of the bioactive BR brassinolide (BL), which is catalyzed by the UDP-glycosyltransferases (UGTs) UGT73C5 and UGT73C6 and occurs mainly at the C-23 position. Additional evidence had suggested that the resultant BL-23-O-glucoside (BL-23-O-Glc) can be malonylated, but the physiological significance of and enzyme required for this reaction had remained unknown. Here, we show that in Arabidopsis thaliana malonylation of BL-23-O-Glc is catalyzed by the acyltransferase phenolic glucoside malonyl-transferase 1 (PMAT1), which is also known to malonylate phenolic glucosides and lipid amides. Loss of PMAT1 abolished BL-23-O-malonylglucoside formation and enriched BL-23-O-Glc, showing that the enzyme acts on the glucoside. An overexpression of PMAT1 in plants where UGT73C6 was also overexpressed, and thus, BL-23-O-Glc formation was promoted, enhanced the symptoms of BR-deficiency of UGT73C6oe plants, providing evidence that PMAT1 contributes to BL inactivation. Based on these results, a model is proposed in which PMAT1 acts in the conversion of both endogenous and xenobiotic glucosides to adjust metabolic homeostasis in spatial and temporal modes.


Asunto(s)
Brasinoesteroides/metabolismo , Glucósidos/metabolismo , Esteroides Heterocíclicos/metabolismo , Aciltransferasas/metabolismo , Aciltransferasas/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Glicosiltransferasas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Esteroides/metabolismo , Transferasas/metabolismo
5.
J Appl Microbiol ; 133(2): 458-476, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35396778

RESUMEN

AIM: This study aimed to characterize the critical points for determining the development of dysbiosis associated with feed intolerances and ruminal acidosis. METHODS AND RESULTS: A metabologenomics approach was used to characterize dynamic microbial and metabolomics shifts using the rumen simulation technique (RUSITEC) by feeding native cornstarch (ST), chemically modified cornstarch (CMS), or sucrose (SU). SU and CMS elicited the most drastic changes as rapidly as 4 h after feeding. This was accompanied by a swift accumulation of d-lactate, and the decline of benzoic and malonic acid. A consistent increase in Bifidobacterium and Lactobacillus as well as a decrease in fibrolytic bacteria was observed for both CMS and ST after 24 h, indicating intolerances within the fibre degrading populations. However, an increase in Lactobacillus was already evident in SU after 8 h. An inverse relationship between Fibrobacter and Bifidobacterium was observed in ST. In fact, Fibrobacter was positively correlated with several short-chain fatty acids, while Lactobacillus was positively correlated with lactic acid, hexoses, hexose-phosphates, pentose phosphate pathway (PENTOSE-P-PWY), and heterolactic fermentation (P122-PWY). CONCLUSIONS: The feeding of sucrose and modified starches, followed by native cornstarch, had a strong disruptive effect in the ruminal microbial community. Feed intolerances were shown to develop at different rates based on the availability of glucose for ruminal microorganisms. SIGNIFICANCE AND IMPACT OF THE STUDY: These results can be used to establish patterns of early dysbiosis (biomarkers) and develop strategies for preventing undesirable shifts in the ruminal microbial ecosystem.


Asunto(s)
Microbiota , Rumen , Alimentación Animal/análisis , Animales , Dieta , Carbohidratos de la Dieta/análisis , Carbohidratos de la Dieta/metabolismo , Disbiosis/metabolismo , Disbiosis/veterinaria , Fermentación , Fibrobacter , Lactobacillus/metabolismo , Rumen/microbiología , Almidón/metabolismo , Sacarosa/metabolismo
6.
Anal Bioanal Chem ; 412(1): 9-16, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31637463

RESUMEN

Food processing can lead to a reduction of contaminants, such as mycotoxins. However, for food processing operations where thermal energy is employed, it is often not clear whether a reduction of mycotoxins also results in a mitigation of the toxicological impact. This is often due to the reason that the formed degradation products are not characterized and data on their toxicity is scarce. From the perspective of an analytical chemist, the elucidation of the fate of a contaminant in a complex food matrix is extremely challenging. An overview of the analytical approaches is given here, and the application and limitations are exemplified based on cases that can be found in recent literature. As most studies rely on targeted analysis, it is not clear whether the predetermined set of compounds differs from the degradation products that are actually formed during food processing. Although untargeted analysis allows for the elucidation of the complete spectrum of degradation products, only one such study is available so far. Further pitfalls include insufficient precision, natural contamination with masked forms of mycotoxins and interferences that are caused by the food matrix. One topic that is of paramount importance for both targeted and untargeted approaches is the availability of reference standards to identity and quantity the formed degradation products. Our vision is that more studies need to be published that characterize the formed degradation products, collect data on their toxicity and thereby complete the knowledge about the mycotoxin mitigating effect during food processing.


Asunto(s)
Contaminación de Alimentos/análisis , Manipulación de Alimentos/métodos , Micotoxinas/análisis
7.
Arch Toxicol ; 93(6): 1729-1743, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31049613

RESUMEN

Glucuronidation is a major phase II conjugation pathway in mammals, playing an important role in the detoxification and biotransformation of xenobiotics including mycotoxins such as deoxynivalenol (DON). Culmorin (CUL), a potentially co-occurring Fusarium metabolite, was recently found to inhibit the corresponding detoxification reaction in plants, namely DON-glucoside formation, raising the question whether CUL might affect also the mammalian counterpart. Using cell-free conditions, CUL when present equimolar (67 µM) or in fivefold excess, suppressed DON glucuronidation by human liver microsomes, reducing the formation of DON-15-glucuronide by 15 and 50%, and DON-3-glucuronide by 30 and 50%, respectively. Substantial inhibitory effects on DON glucuronidation up to 100% were found using the human recombinant uridine 5'-diphospho-glucuronosyltransferases (UGT) 2B4 and 2B7, applying a tenfold excess of CUL (100 µM). In addition, we observed the formation of a novel metabolite of CUL, CUL-11-glucuronide, identified for the first time in vitro as well as in vivo in piglet and human urine samples. Despite the observed potency of CUL to inhibit glucuronidation, no significant synergistic toxicity on cell viability was observed in combinations of CUL (0.1-100 µM) and DON (0.01-10 µM) in HT-29 and HepG2 cells, presumably reflecting the limited capacity of the tested cell lines for DON glucuronidation. However, in humans, glucuronidation is known to represent the main detoxification pathway for DON. The present results, including the identification of CUL-11-glucuronide in urine samples of piglets and humans, underline the necessity of further studies on the relevance of CUL as a potentially co-occurring modulator of DON toxicokinetics in vivo.


Asunto(s)
Fusarium/metabolismo , Glucurónidos/metabolismo , Sesquiterpenos/farmacología , Tricotecenos/metabolismo , Animales , Biotransformación , Línea Celular , Sistema Libre de Células , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glucurónidos/orina , Glucuronosiltransferasa/biosíntesis , Glucuronosiltransferasa/genética , Humanos , Inactivación Metabólica , Masculino , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Ratas , Ratas Sprague-Dawley , Porcinos , Tricotecenos/toxicidad
8.
Org Biomol Chem ; 16(12): 2043-2048, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29465119

RESUMEN

The Fusarium metabolite culmorin (1) is receiving increased attention as an "emerging mycotoxin". It co-occurs with trichothecene mycotoxins and potentially influences their toxicity. Its ecological role and fate in plants is unknown. We synthesized sulfated and glucosylated culmorin conjugates as potential metabolites, which are expected to be formed in planta, and used them as reference compounds. An efficient procedure for the synthesis of culmorin sulfates was developed. Diastereo- and regioselective glucosylation of culmorin (1) was achieved by exploiting or preventing unexpected acyl transfer when using different glucosyl donors. The treatment of a wheat suspension culture with culmorin (1) revealed an in planta conversion of culmorin into culmorin-8-glucoside (6) and culmorin acetate, but no sulfates or culmorin-11-glucoside (7) was found. The treatment of wheat cells with the fungal metabolite 11-acetylculmorin (2) revealed its rapid deacetylation, but also showed the formation of 11-acetylculmorin-8-glucoside (8). These results show that plants are capable of extensively metabolizing culmorin.


Asunto(s)
Sesquiterpenos/síntesis química , Sesquiterpenos/farmacología , Triticum/efectos de los fármacos , Células Cultivadas , Fusarium/metabolismo , Glucosa/química , Glicosilación , Espectroscopía de Resonancia Magnética , Micotoxinas/farmacología , Sesquiterpenos/metabolismo , Estereoisomerismo , Sulfatos/química , Triticum/citología
9.
Anal Bioanal Chem ; 410(18): 4409-4418, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29713754

RESUMEN

Multi-mycotoxin determination by LC-MS is commonly based on external solvent-based or matrix-matched calibration and, if necessary, the correction for the method bias. In everyday practice, the method bias (expressed as apparent recovery RA), which may be caused by losses during the recovery process and/or signal/suppression enhancement, is evaluated by replicate analysis of a single spiked lot of a matrix. However, RA may vary for different lots of the same matrix, i.e., lot-to-lot variation, which can result in a higher relative expanded measurement uncertainty (U r ). We applied a straightforward procedure for the calculation of U r from the within-laboratory reproducibility, which is also called intermediate precision, and the uncertainty of RA (ur,RA). To estimate the contribution of the lot-to-lot variation to U r , the measurement results of one replicate of seven different lots of figs and maize and seven replicates of a single lot of these matrices, respectively, were used to calculate U r . The lot-to-lot variation was contributing to ur,RA and thus to U r for the majority of the 66 evaluated analytes in both figs and maize. The major contributions of the lot-to-lot variation to ur,RA were differences in analyte recovery in figs and relative matrix effects in maize. U r was estimated from long-term participation in proficiency test schemes with 58%. Provided proper validation, a fit-for-purpose U r of 50% was proposed for measurement results obtained by an LC-MS-based multi-mycotoxin assay, independent of the concentration of the analytes.


Asunto(s)
Cromatografía Liquida/métodos , Micotoxinas/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Incertidumbre , Calibración , Ficus/química , Estándares de Referencia , Reproducibilidad de los Resultados , Zea mays/química
11.
Biochemistry ; 56(50): 6585-6596, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29140092

RESUMEN

Family 1 UDP-glycosyltransferases (UGTs) in plants primarily form glucose conjugates of small molecules and, besides other functions, play a role in detoxification of xenobiotics. Indeed, overexpression of a barley UGT in wheat has been shown to control Fusarium head blight, which is a plant disease of global significance that leads to reduced crop yields and contamination with trichothecene mycotoxins such as deoxynivalenol (DON), T-2 toxin, and many other structural variants. The UGT Os79 from rice has emerged as a promising candidate for inactivation of mycotoxins because of its ability to glycosylate DON, nivalenol, and hydrolyzed T-2 toxin (HT-2). However, Os79 is unable to modify T-2 toxin (T-2), produced by pathogens such as Fusarium sporotrichioides and Fusarium langsethii. Activity toward T-2 is desirable because it would allow a single UGT to inactivate co-occurring mycotoxins. Here, the structure of Os79 in complex with the products UDP and deoxynivalenol 3-O-glucoside is reported together with a kinetic analysis of a broad range of trichothecene mycotoxins. Residues associated with the trichothecene binding pocket were examined by site-directed mutagenesis that revealed that trichothecenes substituted at the C4 position, which are not glycosylated by wild-type Os79, can be accommodated in the binding pocket by increasing its volume. The H122A/L123A/Q202L triple mutation, which increases the volume of the active site and attenuates polar contacts, led to strong and equivalent activity toward trichothecenes with C4 acetyl groups. This mutant enzyme provides the broad specificity required to control multiple toxins produced by different Fusarium species and chemotypes.


Asunto(s)
Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Oryza/metabolismo , Fusarium/metabolismo , Glucósidos , Sistema de la Enzima Desramificadora del Glucógeno , Hordeum/enzimología , Cinética , Mutagénesis Sitio-Dirigida , Micotoxinas/metabolismo , Oryza/enzimología , Enfermedades de las Plantas , Proteínas de Plantas/metabolismo , Tricotecenos/química , Triticum
12.
J Exp Bot ; 68(9): 2187-2197, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28407119

RESUMEN

Fusarium Head Blight is a disease of cereal crops that causes severe yield losses and mycotoxin contamination of grain. The main causal pathogen, Fusarium graminearum, produces the trichothecene toxins deoxynivalenol or nivalenol as virulence factors. Nivalenol-producing isolates are most prevalent in Asia but co-exist with deoxynivalenol producers in lower frequency in North America and Europe. Previous studies identified a barley UDP-glucosyltransferase, HvUGT13248, that efficiently detoxifies deoxynivalenol, and when expressed in transgenic wheat results in high levels of type II resistance against deoxynivalenol-producing F. graminearum. Here we show that HvUGT13248 is also capable of converting nivalenol into the non-toxic nivalenol-3-O-ß-d-glucoside. We describe the enzymatic preparation of a nivalenol-glucoside standard and its use in development of an analytical method to detect the nivalenol-glucoside conjugate. Recombinant Escherichia coli expressing HvUGT13248 glycosylates nivalenol more efficiently than deoxynivalenol. Overexpression in yeast, Arabidopsis thaliana, and wheat leads to increased nivalenol resistance. Increased ability to convert nivalenol to nivalenol-glucoside was observed in transgenic wheat, which also exhibits type II resistance to a nivalenol-producing F. graminearum strain. Our results demonstrate the HvUGT13248 can act to detoxify deoxynivalenol and nivalenol and provide resistance to deoxynivalenol- and nivalenol-producing Fusarium.


Asunto(s)
Fusarium/metabolismo , Glucosiltransferasas/genética , Hordeum/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Tricotecenos/metabolismo , Resistencia a la Enfermedad/genética , Glucosiltransferasas/metabolismo , Hordeum/enzimología , Hordeum/microbiología , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/microbiología , Triticum/genética , Triticum/metabolismo , Triticum/microbiología
13.
Arch Toxicol ; 91(12): 3857-3872, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28638985

RESUMEN

The Fusarium mycotoxin deoxynivalenol (DON) is a frequent contaminant of cereal-based food and feed. Mammals metabolize DON by conjugation to glucuronic acid (GlcAc), the extent and regioselectivity of which is species-dependent. So far, only DON-3-glucuronide (DON-3-GlcAc) and DON-15-GlcAc have been unequivocally identified as mammalian DON glucuronides, and DON-7-GlcAc has been proposed as further DON metabolite. In the present work, qualitative HPLC-MS/MS analysis of urine samples of animals treated with DON (rats: 2 mg/kg bw, single bolus, gavage; mice: 1 mg/kg bw, single i.p. injection; pigs: 74 µg/kg bw, single bolus, gavage; cows: 5.2 mg DON/kg dry mass, oral for 13 weeks) revealed additional DON and deepoxy-DON (DOM) glucuronides. To elucidate their structures, DON and DOM were incubated with human (HLM) and rat liver microsomes (RLM). Besides the expected DON/DOM-3- and 15-GlcAc, minor amounts of four DON- and four DOM glucuronides were formed. Isolation and enzymatic hydrolysis of four of these compounds yielded iso-DON and iso-DOM, the identities of which were eventually confirmed by NMR. Incubation of iso-DON and iso-DOM with RLM and HLM yielded two main glucuronides for each parent compound, which were isolated and identified as iso-DON/DOM-3-GlcAc and iso-DON/DOM-8-GlcAc by NMR. Iso-DON-3-GlcAc, most likely misidentified as DON-7-GlcAc in the literature, proved to be a major DON metabolite in rats and a minor metabolite in pigs. In addition, iso-DON-8-GlcAc turned out to be one of the major DON metabolites in mice. DOM-3-GlcAc was the dominant DON metabolite in urine of cows and an important DON metabolite in rat urine. Iso-DOM-3-GlcAc was detected in urine of DON-treated rats and cows. Finally, DON-8,15-hemiketal-8-glucuronide, a previously described by-product of DON-3-GlcAc production by RLM, was identified in urine of DON-exposed mice and rats. The discovery of several novel DON-derived glucuronides in animal urine requires adaptation of the currently used methods for DON-biomarker analysis.


Asunto(s)
Tricotecenos/farmacocinética , Tricotecenos/orina , Animales , Bovinos , Cromatografía Líquida de Alta Presión/métodos , Glucurónidos/metabolismo , Glucurónidos/orina , Humanos , Hidrólisis , Ratones , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Ratas , Porcinos , Espectrometría de Masas en Tándem , Tricotecenos/metabolismo
14.
Arch Toxicol ; 91(2): 699-712, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27100115

RESUMEN

Crossover animal trials were performed with intravenous and oral administration of deoxynivalenol-3-ß-D-glucoside (DON3G) and deoxynivalenol (DON) to broiler chickens and pigs. Systemic plasma concentrations of DON, DON3G and de-epoxy-DON were quantified using liquid chromatography-tandem mass spectrometry. Liquid chromatography coupled to high-resolution mass spectrometry was used to unravel phase II metabolism of DON. Additionally for pigs, portal plasma was analysed to study presystemic hydrolysis and metabolism. Data were processed via tailor-made compartmental toxicokinetic models. The results in broiler chickens indicate that DON3G is not hydrolysed to DON in vivo. Furthermore, the absolute oral bioavailability of DON3G in broiler chickens was low (3.79 ± 2.68 %) and comparable to that of DON (5.56 ± 2.05 %). After PO DON3G administration to pigs, only DON was detected in plasma, indicating a complete presystemic hydrolysis of the absorbed fraction of DON3G. However, the absorbed fraction of DON3G, recovered as DON, was approximately 5 times lower than after PO DON administration, 16.1 ± 5.4 compared with 81.3 ± 17.4 %. Analysis of phase II metabolites revealed that biotransformation of DON and DON3G in pigs mainly consists of glucuronidation, whereas in chickens predominantly conjugation with sulphate occurred. The extent of phase II metabolism is notably higher for chickens than for pigs, which might explain the differences in sensitivity of these species to DON. Although in vitro studies demonstrate a decreased toxicity of DON3G compared with DON, the species-dependent toxicokinetic data and in vivo hydrolysis to DON illustrate the toxicological relevance and consequently the need for further research to establish a tolerable daily intake.


Asunto(s)
Glucósidos/farmacocinética , Tricotecenos/farmacocinética , Administración Intravenosa , Administración Oral , Animales , Disponibilidad Biológica , Pollos , Cromatografía Liquida/métodos , Glucósidos/administración & dosificación , Glucósidos/toxicidad , Hidrólisis , Masculino , Reproducibilidad de los Resultados , Sus scrofa , Espectrometría de Masas en Tándem/métodos , Toxicocinética , Tricotecenos/administración & dosificación , Tricotecenos/toxicidad
15.
Biochemistry ; 55(44): 6175-6186, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27715009

RESUMEN

Fusarium head blight is a plant disease with significant agricultural and health impact which affects cereal crops such as wheat, barley, and maize and is characterized by reduced grain yield and the accumulation of trichothecene mycotoxins such as deoxynivalenol (DON). Studies have identified trichothecene production as a virulence factor in Fusarium graminearum and have linked DON resistance to the ability to form DON-3-O-glucoside in wheat. Here, the structures of a deoxynivalenol:UDP-glucosyltransferase (Os79) from Oryza sativa are reported in complex with UDP in an open conformation, in complex with UDP in a closed conformation, and in complex with UDP-2-fluoro-2-deoxy-d-glucose and trichothecene at 1.8, 2.3, and 2.2 Å resolution, respectively. The active site of Os79 lies in a groove between the N-terminal acceptor and the C-terminal donor-binding domains. Structural alignments reveal that Os79 likely utilizes a catalytic mechanism similar to those of other plant UGTs, with His 27 activating the trichothecene O3 hydroxyl for nucleophilic attack at C1' of the UDP-glucose donor. Kinetic analysis of mutant Os79 revealed that Thr 291 plays a critical role in catalysis as a catalytic acid or to position the UDP moiety during the nucleophilic attack. Steady-state kinetic analysis demonstrated that Os79 conjugates multiple trichothecene substrates such as DON, nivalenol, isotrichodermol, and HT-2 toxin, but not T-2 toxin. These data establish a foundation for understanding substrate specificity and activity in this enzyme and can be used to guide future efforts to increase DON resistance in cereal crops.


Asunto(s)
Glucosiltransferasas/química , Oryza/enzimología , Proteínas de Plantas/química , Tricotecenos/metabolismo , Catálisis , Cristalización , Cristalografía por Rayos X , Fusarium/patogenicidad , Glucosiltransferasas/genética , Cinética , Mutagénesis Sitio-Dirigida , Oryza/microbiología , Proteínas de Plantas/genética , Especificidad por Sustrato
17.
Arch Toxicol ; 90(8): 2037-46, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26404761

RESUMEN

Natural food contaminants such as mycotoxins are an important problem for human health. Deoxynivalenol (DON) is one of the most common mycotoxins detected in cereals and grains. Its toxicological effects mainly concern the immune system and the gastrointestinal tract. This toxin is a potent ribotoxic stressor leading to MAP kinase activation and inflammatory response. DON frequently co-occurs with its glucosylated form, the masked mycotoxin deoxynivalenol-3-ß-D-glucoside (D3G). The toxicity of this later compound remains unknown in mammals. This study aimed to assess the ability of D3G to elicit a ribotoxic stress and to induce intestinal toxicity. The toxicity of D3G and DON (0-10 µM) was studied in vitro, on the human intestinal Caco-2 cell line, and ex vivo, on porcine jejunal explants. First, an in silico analysis revealed that D3G, contrary to DON, was unable to bind to the A-site of the ribosome peptidyl transferase center, the main targets for DON toxicity. Accordingly, D3G did not activate JNK and P38 MAPKs in treated Caco-2 cells and did not alter viability and barrier function on cells, as measured by the trans-epithelial electrical resistance. Treatment of intestinal explants for 4 h with 10 µM DON induced morphological lesions and up-regulated the expression of pro-inflammatory cytokines as measured by qPCR and pan-genomic microarray analysis. By contrast, expression profile of D3G-treated explants was similar to that of controls, and these explants did not show histomorphology alteration. In conclusion, our data demonstrated that glucosylation of DON suppresses its ability to bind to the ribosome and decreases its intestinal toxicity.


Asunto(s)
Contaminación de Alimentos/análisis , Glucósidos/toxicidad , Yeyuno/efectos de los fármacos , Tricotecenos/toxicidad , Animales , Células CACO-2 , Técnicas de Cultivo de Célula , Supervivencia Celular/efectos de los fármacos , Citocinas/genética , Humanos , Yeyuno/metabolismo , Yeyuno/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Peptidil Transferasas/metabolismo , Unión Proteica , Ribosomas/efectos de los fármacos , Ribosomas/enzimología , Porcinos , Transcriptoma/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
Mol Plant Microbe Interact ; 28(11): 1237-46, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26214711

RESUMEN

Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is a devastating disease of wheat that results in economic losses worldwide. During infection, F. graminearum produces trichothecene mycotoxins, including deoxynivalenol (DON), that increase fungal virulence and reduce grain quality. Transgenic wheat expressing a barley UDP-glucosyltransferase (HvUGT13248) were developed and evaluated for FHB resistance, DON accumulation, and the ability to metabolize DON to the less toxic DON-3-O-glucoside (D3G). Point-inoculation tests in the greenhouse showed that transgenic wheat carrying HvUGT13248 exhibited significantly higher resistance to disease spread in the spike (type II resistance) compared with nontransformed controls. Two transgenic events displayed complete suppression of disease spread in the spikes. Expression of HvUGT13248 in transgenic wheat rapidly and efficiently conjugated DON to D3G, suggesting that the enzymatic rate of DON detoxification translates to type II resistance. Under field conditions, FHB severity was variable; nonetheless, transgenic events showed significantly less-severe disease phenotypes compared with the nontransformed controls. In addition, a seedling assay demonstrated that the transformed plants had a higher tolerance to DON-inhibited root growth than nontransformed plants. These results demonstrate the utility of detoxifying DON as a FHB control strategy in wheat.


Asunto(s)
Fusarium/metabolismo , Glucosiltransferasas/metabolismo , Hordeum/enzimología , Proteínas de Plantas/metabolismo , Tricotecenos/metabolismo , Triticum/metabolismo , Southern Blotting , Western Blotting , Resistencia a la Enfermedad/genética , Fusarium/fisiología , Glucósidos/metabolismo , Glucosiltransferasas/genética , Hordeum/genética , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Triticum/genética , Triticum/microbiología , Uridina Difosfato/metabolismo
19.
Environ Microbiol ; 17(8): 2588-600, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25403493

RESUMEN

The ubiquitous filamentous fungus Fusarium graminearum causes the important disease Fusarium head blight on various species of cereals, leading to contamination of grains with mycotoxins. In a survey of F. graminearum (sensu stricto) on wheat in North America several novel strains were isolated, which produced none of the known trichothecene mycotoxins despite causing normal disease symptoms. In rice cultures, a new trichothecene mycotoxin (named NX-2) was characterized by liquid chromatography-tandem mass spectrometry. Nuclear magnetic resonance measurements identified NX-2 as 3α-acetoxy-7α,15-dihydroxy-12,13-epoxytrichothec-9-ene. Compared with the well-known 3-acetyl-deoxynivalenol (3-ADON), it lacks the keto group at C-8 and hence is a type A trichothecene. Wheat ears inoculated with the isolated strains revealed a 10-fold higher contamination with its deacetylated form, named NX-3, (up to 540 mg kg(-1) ) compared with NX-2. The toxicities of the novel mycotoxins were evaluated utilizing two in vitro translation assays and the alga Chlamydomonas reinhardtii. NX-3 inhibits protein biosynthesis to almost the same extent as the prominent mycotoxin deoxynivalenol, while NX-2 is far less toxic, similar to 3-ADON. Genetic analysis revealed a different TRI1 allele in the N-isolates, which was verified to be responsible for the difference in hydroxylation at C-8.


Asunto(s)
Grano Comestible/microbiología , Contaminación de Alimentos/análisis , Fusarium/metabolismo , Micotoxinas/metabolismo , Enfermedades de las Plantas/microbiología , Cromatografía Liquida , Fusarium/genética , Fusarium/aislamiento & purificación , Genotipo , Micotoxinas/biosíntesis , Micotoxinas/química , América del Norte , Oryza/microbiología , Tricotecenos/química , Tricotecenos/metabolismo , Triticum/microbiología
20.
Appl Environ Microbiol ; 81(15): 4885-93, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25979885

RESUMEN

Glycosylation plays a central role in plant defense against xenobiotics, including mycotoxins. Glucoconjugates of Fusarium toxins, such as deoxynivalenol-3-O-ß-d-glucoside (DON-3G), often cooccur with their parental toxins in cereal-based food and feed. To date, only limited information exists on the occurrence of glucosylated mycotoxins and their toxicological relevance. Due to a lack of analytical standards and the requirement of high-end analytical instrumentation for their direct determination, hydrolytic cleavage of ß-glucosides followed by analysis of the released parental toxins has been proposed as an indirect determination approach. This study compares the abilities of several fungal and recombinant bacterial ß-glucosidases to hydrolyze the model analyte DON-3G. Furthermore, substrate specificities of two fungal and two bacterial (Lactobacillus brevis and Bifidobacterium adolescentis) glycoside hydrolase family 3 ß-glucosidases were evaluated on a broader range of substrates. The purified recombinant enzyme from B. adolescentis (BaBgl) displayed high flexibility in substrate specificity and exerted the highest hydrolytic activity toward 3-O-ß-d-glucosides of the trichothecenes deoxynivalenol (DON), nivalenol, and HT-2 toxin. A Km of 5.4 mM and a Vmax of 16 µmol min(-1) mg(-1) were determined with DON-3G. Due to low product inhibition (DON and glucose) and sufficient activity in several extracts of cereal matrices, this enzyme has the potential to be used for indirect analyses of trichothecene-ß-glucosides in cereal samples.


Asunto(s)
Bifidobacterium/enzimología , Celulasas/metabolismo , Fusarium/metabolismo , Glucósidos/metabolismo , Toxina T-2/análogos & derivados , Tricotecenos/metabolismo , Celulasas/química , Celulasas/aislamiento & purificación , Grano Comestible/química , Hidrólisis , Cinética , Levilactobacillus brevis/enzimología , Micotoxinas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Toxina T-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA