Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nucleic Acids Res ; 51(16): 8563-8574, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37409572

RESUMEN

Hel308 helicases promote genome stability in archaea and are conserved in metazoans, where they are known as HELQ. Their helicase mechanism is well characterised, but it is unclear how they specifically contribute to genome stability in archaea. We show here that a highly conserved motif of Hel308/HELQ helicases (motif IVa, F/YHHAGL) modulates both DNA unwinding and a newly identified strand annealing function of archaeal Hel308. A single amino acid substitution in motif IVa results in hyper-active DNA helicase and annealase activities of purified Hel308 in vitro. All-atom molecular dynamics simulations using Hel308 crystal structures provided a molecular basis for these differences between mutant and wild type Hel308. In archaeal cells, the same mutation results in 160000-fold increased recombination, exclusively as gene conversion (non-crossover) events. However, crossover recombination is unaffected by the motif IVa mutation, as is cell viability or DNA damage sensitivity. By contrast, cells lacking Hel308 show impaired growth, increased sensitivity to DNA cross-linking agents, and only moderately increased recombination. Our data reveal that archaeal Hel308 suppresses recombination and promotes DNA repair, and that motif IVa in the RecA2 domain acts as a catalytic switch to modulate the separable recombination and repair activities of Hel308.


Asunto(s)
Archaea , ADN Helicasas , Humanos , Archaea/genética , ADN Helicasas/metabolismo , Reparación del ADN , ADN/química , Recombinación Genética , Inestabilidad Genómica
2.
Anal Bioanal Chem ; 416(24): 5377-5386, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39172237

RESUMEN

Manganese ion homeostasis is vital for bacteria and is achieved via manganese-dependent transcription factors. Manganese mediation of transcription factor attachment to the corresponding oligonucleotide sequences can be investigated, e.g. via electrophoretic mobility shift assays (EMSA). Formation of specific biocomplexes leads to differences in the migration pattern upon gel electrophoresis. Focusing on electrophoresis in the gas-phase, applying a nano electrospray gas-phase electrophoretic mobility molecular analyzer (nES GEMMA) also known as nES differential mobility analyzer (nES DMA), and on transcription factors (MntR proteins) from Bacillus subtilis and Mycobacterium tuberculosis, we took interest in the gas-phase electrophoresis of the corresponding biospecific complexes. We compared nES GEMMA, separating analytes in the nanometer regime (a few to several hundred nm in diameter) in the gas-phase in their native state according to particle size, to EMSA data. Indeed we were able to demonstrate manganese-mediated attachment of MntR to target genomic sequences with both analytical techniques. Despite some inherent pitfalls of the nES GEMMA method like analyte/instrument surface interactions, we were able to detect the target complexes. Moreover, we were able to calculate the molecular weight (MW) of the obtained species by application of a correlation function based on nES GEMMA obtained data. As gas-phase electrophoresis also offers the possibility of offline hyphenation to orthogonal analysis techniques, we are confident that nES GEMMA measurements are not just complementary to EMSA, but will offer the possibility of further in-depth characterization of biocomplexes in the future.


Asunto(s)
Bacillus subtilis , Manganeso , Factores de Transcripción , Manganeso/metabolismo , Manganeso/química , Bacillus subtilis/metabolismo , Factores de Transcripción/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas Bacterianas/metabolismo , Ensayo de Cambio de Movilidad Electroforética/métodos , ADN/química , Gases/química , Electroforesis/métodos
3.
Bioorg Chem ; 147: 107338, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583253

RESUMEN

Macrozones are novel conjugates of azithromycin and thiosemicarbazones, which exhibit very good in vitro antibacterial activities against susceptible and some resistant bacterial strains thus showing a potential for further development. A combination of spectrometric (fluorimetry, STD and WaterLOGSY NMR) and molecular docking studies provided insights into atomic details of interactions between selected macrozones and biological receptors such as E. coli ribosome and bovine serum albumin. Fluorimetric measurements revealed binding constants in the micro-molar range while NMR experiments provided data on binding epitopes. It has been demonstrated that both STD and WaterLOGSY gave comparable and consistent results unveiling atoms in intimate contacts with biological receptors. Docking studies pointed towards main interactions between macrozones and E. coli ribosome which included specific π - π stacking and hydrogen bonding interactions with thiosemicarbazone part extending down the ribosome exit tunnel. The results of the docking experiments were in fine correlation with those obtained by NMR and fluorimetry. Our investigation pointed towards a two-site binding mechanism of interactions between macrozones and E. coli ribosome which is the most probable reason for their activity against azithromycin-resistant strains. Much better activity of macrozone-nickel coordinated compound against E. coli ribosome compared to other macrozones has been attributed to the higher polarity which enabled better bacterial membrane penetration and binding of the two thiosemicarbazone units thus additionally contributing to the overall binding energy. The knowledge gained in this study should play an important role in anti-infective macrolide design in the future.


Asunto(s)
Antibacterianos , Escherichia coli , Fluorometría , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli/efectos de los fármacos , Sitios de Unión , Estructura Molecular , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Tiosemicarbazonas/química , Tiosemicarbazonas/farmacología , Relación Estructura-Actividad , Ribosomas/metabolismo , Ribosomas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Animales , Bovinos , Azitromicina/farmacología , Azitromicina/química , Azitromicina/metabolismo
4.
Nucleic Acids Res ; 50(W1): W152-W158, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35544315

RESUMEN

In the last decade, significant advances have been made towards the rational design of proteins, DNA, and other organic nanostructures. The emerging possibility to precisely engineer molecular structures resulted in a wide range of new applications in fields such as biotechnology or medicine. The complexity and size of the artificial molecular systems as well as the number of interactions are greatly increasing and are manifesting the need for computational design support. In addition, a new generation of AI-based structure prediction tools provides researchers with completely new possibilities to generate recombinant proteins and functionalized DNA nanostructures. In this study, we present Catana, a web-based modelling environment suited for proteins and DNA nanostructures. User-friendly features were developed to create and modify recombinant fusion proteins, predict protein structures based on the amino acid sequence, and manipulate DNA origami structures. Moreover, Catana was jointly developed with the novel Unified Nanotechnology Format (UNF). Therefore, it employs a state-of-the-art coarse-grained data model, that is compatible with other established and upcoming applications. A particular focus was put on an effortless data export to allow even inexperienced users to perform in silico evaluations of their designs by means of molecular dynamics simulations. Catana is freely available at http://catana.ait.ac.at/.


Asunto(s)
Nanoestructuras , Ácidos Nucleicos , Nanoestructuras/química , Nanotecnología/métodos , ADN/química , Proteínas Recombinantes de Fusión , Conformación de Ácido Nucleico
5.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674477

RESUMEN

Manganese (II) ions are essential for a variety of bacterial cellular processes. The transcription factor MntR is a metallosensor that regulates Mn2+ ion homeostasis in the bacterium Bacillus subtilis. Its DNA-binding affinity is increased by Mn2+ ion binding, allowing it to act as a transcriptional repressor of manganese import systems. Although experimentally well-researched, the molecular mechanism that regulates this process is still a puzzle. Computational simulations supported by circular dichroism (CD), differential scanning calorimetry (DSC) and native gel electrophoresis (native-PAGE) experiments were employed to study MntR structural and dynamical properties in the presence and absence of Mn2+ ions. The results of molecular dynamics (MD) simulations revealed that Mn2+ ion binding reduces the structural dynamics of the MntR protein and shifts the dynamic equilibrium towards the conformations adequate for DNA binding. Results of CD and DSC measurements support the computational results showing the change in helical content and stability of the MntR protein upon Mn2+ ion binding. Further, MD simulations show that Mn2+ binding induces polarization of the protein electrostatic potential, increasing the positive electrostatic potential of the DNA-binding helices in particular. In order to provide a deeper understanding of the changes in protein structure and dynamics due to Mn2+ binding, a mutant in which Mn2+ binding is mimicked by a cysteine bridge was constructed and also studied computationally and experimentally.


Asunto(s)
Manganeso , Factores de Transcripción , Factores de Transcripción/metabolismo , Manganeso/metabolismo , Proteínas Represoras/genética , Bacillus subtilis/genética , Sitios de Unión , Proteínas Bacterianas/metabolismo , ADN/metabolismo
6.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36768477

RESUMEN

Mammalian purine nucleoside phosphorylase (PNP) is biologically active as a homotrimer, in which each monomer catalyzes a reaction independently of the others. To answer the question of why the native PNP forms a trimeric structure, we constructed, in silico and in vitro, the monomeric form of the enzyme. Molecular dynamics simulations showed different geometries of the active site in the non-mutated trimeric and monomeric PNP forms, which suggested that the active site in the isolated monomer could be non-functional. To confirm this hypothesis, six amino acids located at the interface of the subunits were selected and mutated to alanines to disrupt the trimer and obtain a monomer (6Ala PNP). The effects of these mutations on the enzyme structure, stability, conformational dynamics, and activity were examined. The solution experiments confirmed that the 6Ala PNP mutant occurs mainly as a monomer, with a secondary structure almost identical to the wild type, WT PNP, and importantly, it shows no enzymatic activity. Simulations confirmed that, although the secondary structure of the 6Ala monomer is similar to the WT PNP, the positions of the amino acids building the 6Ala PNP active site significantly differ. These data suggest that a trimeric structure is necessary to stabilize the geometry of the active site of this enzyme.


Asunto(s)
Simulación de Dinámica Molecular , Purina-Nucleósido Fosforilasa , Animales , Purina-Nucleósido Fosforilasa/genética , Purina-Nucleósido Fosforilasa/química , Purina-Nucleósido Fosforilasa/metabolismo , Mamíferos/metabolismo , Dominio Catalítico , Estructura Secundaria de Proteína
7.
Histochem Cell Biol ; 158(3): 261-277, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35648291

RESUMEN

Overexpression of ABC transporters, such as ABCB1 and ABCG2, plays an important role in mediating multidrug resistance (MDR) in cancer. This feature is also attributed to a subpopulation of cancer stem cells (CSCs), having enhanced tumourigenic potential. ABCG2 is specifically associated with the CSC phenotype, making it a valuable target for eliminating aggressive and resistant cells. Several natural and synthetic ionophores have been discovered as CSC-selective drugs that may also have MDR-reversing ability, whereas their interaction with ABCG2 has not yet been explored. We previously reported the biological activities, including ABCB1 inhibition, of a group of adamantane-substituted diaza-18-crown-6 (DAC) compounds that possess ionophore capabilities. In this study, we investigated the mechanism of ABCG2-inhibitory activity of DAC compounds and the natural ionophores salinomycin, monensin and nigericin. We used a series of functional assays, including real-time microscopic analysis of ABCG2-mediated fluorescent substrate transport in cells, and docking studies to provide comparative aspects for the transporter-compound interactions and their role in restoring chemosensitivity. We found that natural ionophores did not inhibit ABCG2, suggesting that their CSC selectivity is likely mediated by other mechanisms. In contrast, DACs with amide linkage in the side arms demonstrated noteworthy ABCG2-inhibitory activity, with DAC-3Amide proving to be the most potent. This compound induced conformational changes of the transporter and likely binds to both Cavity 1 and the NBD-TMD interface. DAC-3Amide reversed ABCG2-mediated MDR in model cells, without affecting ABCG2 expression or localization. These results pave the way for the development of new crown ether compounds with improved ABCG2-inhibitory properties.


Asunto(s)
Antineoplásicos , Éteres Corona , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Éteres Corona/farmacología , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Ionóforos/farmacología
8.
J Enzyme Inhib Med Chem ; 37(1): 1327-1339, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35514167

RESUMEN

As a result of our previous research focussed on benzimidazoles, herein we present design, synthesis, QSAR analysis and biological activity of novel N-substituted benzimidazole derived carboxamides. Carboxamides were designed to study the influence of the number of methoxy groups, the type of the substituent placed at the benzimidazole core on biological activity. Pronounced antioxidative activity displayed unsubstituted 28 (IC50 ≈ 3.78 mM, 538.81 mmolFe2+/mmolC) and dimethoxy substituted derivative 34 (IC50 ≈ 5.68 mM, 618.10 mmolFe2+/mmolC). Trimethoxy substituted 43 and unsubstituted compound 40 with isobutyl side chain at N atom showed strong activity against HCT116 (IC50 ≈ 0.6 µM, both) and H 460 cells (IC50 ≈ 2.5 µM; 0.4 µM), being less cytotoxic towards non-tumour cell. Antioxidative activity in cell generally confirmed relatively modest antioxidant capacity obtained in DPPH/FRAP assays of derivatives 34 and 40. The 3D-QSAR models were generated to explore molecular properties that have the highest influence on antioxidative activity.


Asunto(s)
Antineoplásicos , Relación Estructura-Actividad Cuantitativa , Antineoplásicos/química , Antioxidantes/química , Antioxidantes/farmacología , Bencimidazoles/química , Bencimidazoles/farmacología , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad
9.
Mol Pharm ; 18(11): 4210-4223, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34670371

RESUMEN

Praziquantel (PZQ) is a biopharmaceutical classification system (BCS) class II anthelmintic drug characterized by poor solubility and a bitter taste, both of which can be addressed by inclusion complexation with cyclodextrins (CD). In this work, a comprehensive investigation of praziquantel/cyclodextrin (PZQ/CD) complexes was conducted by means of UV-vis spectroscopy, spectrofluorimetry, NMR spectroscopy, liquid chromatography-high-resolution mass spectrometry (LC-HRMS/MS), and molecular modeling. Phase solubility studies revealed that among four CDs tested, the randomly methylated ß-CD (RMßCD) and the sulfobutylether sodium salt ß-CD (SBEßCD) resulted in the highest increase in PZQ solubility (approximately 16-fold). The formation of 1:1 inclusion complexes was confirmed by HRMS, NMR, and molecular modeling. Both cyclohexane and the central pyrazino ring, as well as an aromatic part of PZQ are included in the CD central cavity through several different binding modes, which exist simultaneously. Furthermore, the influence of CDs on PZQ stability was investigated in solution (HCl, NaOH, H2O2) and in the solid state (accelerated degradation, photostability) by ultra-high-performance liquid chromatography-diode array detection-tandem mass spectrometry (UPLC-DAD/MS). CD complexation promoted new degradation pathways of the drug. In addition to three already known PZQ degradants, seven new degradation products were identified (m/z 148, 215, 217, 301, 327, 343, and 378) and their structures were proposed based on HRMS/MS data. Solid complexes were prepared by mechanochemical activation, a solvent-free and ecologically acceptable method.


Asunto(s)
Antihelmínticos/química , Praziquantel/química , beta-Ciclodextrinas/química , Química Farmacéutica , Cromatografía Líquida de Alta Presión , Composición de Medicamentos/métodos , Estabilidad de Medicamentos , Excipientes/química , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Solubilidad
10.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799639

RESUMEN

Cas3 is a ssDNA-targeting nuclease-helicase essential for class 1 prokaryotic CRISPR immunity systems, which has been utilized for genome editing in human cells. Cas3-DNA crystal structures show that ssDNA follows a pathway from helicase domains into a HD-nuclease active site, requiring protein conformational flexibility during DNA translocation. In genetic studies, we had noted that the efficacy of Cas3 in CRISPR immunity was drastically reduced when temperature was increased from 30 °C to 37 °C, caused by an unknown mechanism. Here, using E. coli Cas3 proteins, we show that reduced nuclease activity at higher temperature corresponds with measurable changes in protein structure. This effect of temperature on Cas3 was alleviated by changing a single highly conserved tryptophan residue (Trp-406) into an alanine. This Cas3W406A protein is a hyperactive nuclease that functions independently from temperature and from the interference effector module Cascade. Trp-406 is situated at the interface of Cas3 HD and RecA1 domains that is important for maneuvering DNA into the nuclease active site. Molecular dynamics simulations based on the experimental data showed temperature-induced changes in positioning of Trp-406 that either blocked or cleared the ssDNA pathway. We propose that Trp-406 forms a 'gate' for controlling Cas3 nuclease activity via access of ssDNA to the nuclease active site. The effect of temperature in these experiments may indicate allosteric control of Cas3 nuclease activity caused by changes in protein conformations. The hyperactive Cas3W406A protein may offer improved Cas3-based genetic editing in human cells.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , ADN Helicasas/metabolismo , ADN de Cadena Simple/metabolismo , ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Triptófano/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Alanina/química , Alanina/genética , Alanina/metabolismo , Secuencia de Aminoácidos , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Dominio Catalítico/genética , Dicroismo Circular , ADN/química , ADN/genética , ADN Helicasas/química , ADN Helicasas/genética , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Edición Génica/métodos , Humanos , Mutación Missense , Conformación Proteica , Homología de Secuencia de Aminoácido , Temperatura , Triptófano/química , Triptófano/genética
11.
Chem Res Toxicol ; 32(9): 1880-1892, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31381319

RESUMEN

This paper discusses antioxidative and biological activities of 25 novel amidino substituted benzamides with a variety of heteroaromatic nuclei attached to the benzamide moiety and with a variable number of methoxy or hydroxy substituents. Targeted compounds, bearing either amidino or 2-imidazolinyl substituent, were obtained in the Pinner reaction from cyano precursors. 3D-QSAR models were generated to predict antioxidative activity of the 25 novel aromatic and heteroaromatic benzamide derivatives. The compounds were tested for antioxidative activity using in vitro spectrophotometric assays. Direct validation of 3D-QSAR approach for predicting activities of novel benzamide derivatives was carried out by comparing experimental and computationally predicted antioxidative activity. Experimentally determined activities for all novel compounds were found to be within a standard deviation of error of the models. Following this, structure-activity relationships among the synthesized compounds are discussed. Furthermore, antiproliferative activity in vitro against HeLa cells as well as antibacterial and antifungal activity was tested to confirm the other biological activities of the prepared compounds.


Asunto(s)
Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Benzamidas/farmacología , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Antioxidantes/síntesis química , Antioxidantes/química , Aspergillus/efectos de los fármacos , Bacterias/efectos de los fármacos , Benzamidas/síntesis química , Benzamidas/química , Candida albicans/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Análisis de Componente Principal , Relación Estructura-Actividad Cuantitativa , Saccharomyces cerevisiae/efectos de los fármacos
12.
Mol Divers ; 22(3): 723-741, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29667008

RESUMEN

Herein, we describe the synthesis of twenty-one novel water-soluble monocationic 2-aryl/heteroaryl-substituted 6-(2-imidazolinyl)benzothiazole mesylates 3a-3u and present the results of their anti-proliferative assays. Efficient syntheses were achieved by three complementary simple two-step synthetic protocols based on the condensation reaction of aryl/heteroaryl carbaldehydes or carboxylic acid. We developed an eco-friendly synthetic protocol using glycerol as green solvent, particularly appropriate for the condensation of thermally and acid-sensitive heterocycles such as furan, benzofuran, pyrrole, and indole. Screening of anti-proliferative activity was performed on four human tumour cell lines in vitro including pancreatic cancer (CFPAC-1), metastatic colon cancer (SW620), hepatocellular carcinoma (HepG2), and cervical cancer (HeLa), as well as in normal human fibroblast cell lines. All tested compounds showed strong to moderate anti-proliferative activity on tested cell lines depending on the structure containing aryl/heteroaryl moiety coupled to 6-(2-imidazolinyl)benzothiazole moiety. The most potent cytostatic effects on all tested cell lines with [Formula: see text] values ranging from 0.1 to 3.70 [Formula: see text] were observed for benzothiazoles substituted with naphthalene-2-yl 3c, benzofuran-2-yl 3e, indole-3-yl 3j, indole-2-yl 3k, quinoline-2-yl 3s, and quinoline-3-yl 3t and derivatives substituted with phenyl 3a, naphthalene-1-yl 3b, benzothiazole-2-yl 3g, benzothiazole-6-yl 3h, N-methylindole-3-yl 3l, benzimidazole-2-yl 3n, benzimidazole-5(6)-yl 3o, and quinolone-4-yl 3u with [Formula: see text] values ranging from 1.1 to 29.1 [Formula: see text]. Based on obtained anti-proliferative activities, 3D-QSAR models for five cell lines were derived. Molecular volume, molecular surface, the sum of hydrophobic surface areas, molecular mass, and possibility of making dispersion forces were identified by QSAR analyses as molecular properties that are positively correlated with anti-proliferative activity, while compound's capability to accept H-bond was identified as a negatively correlated property. Comparison of molecular properties identified for different cell lines enabled assumptions about similarity of mode of action through which anti-proliferative activities against different cell lines are accomplished. Novel compounds that are predicted to have enhanced activities in comparison with herein presented ones were designed using 3D-QSAR analysis as guideline.


Asunto(s)
Benzotiazoles , Citostáticos , Mesilatos , Benzotiazoles/síntesis química , Benzotiazoles/química , Benzotiazoles/farmacología , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citostáticos/síntesis química , Citostáticos/química , Citostáticos/farmacología , Humanos , Mesilatos/síntesis química , Mesilatos/química , Mesilatos/farmacología , Modelos Moleculares , Relación Estructura-Actividad Cuantitativa
13.
Chemistry ; 23(43): 10396-10406, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28493492

RESUMEN

Derivatives of dehydroacetic acid comprising amide or urea subunits have been synthesized and their anion-binding properties investigated. Among a series of halides and oxyanions, the studied compounds selectively bind acetate and dihydrogen phosphate in acetonitrile and dimethyl sulfoxide. The corresponding complexation processes were characterized by means of 1 H NMR titrations, which revealed a 1:1 complex stoichiometry in most cases, with the exception of dihydrogen phosphate, which formed 2:1 (anion/ligand) complexes in acetonitrile. The complex stability constants were determined and are discussed with respect to the structural properties of the receptors, the hydrogen-bond-forming potential of the anions, and the characteristics of the solvents used. Based on the spectroscopic data and results of Monte Carlo simulations, the amide or urea groups were affirmed as the primary binding sites in all cases. The results of the computational methods indicate that an array of both inter- and intramolecular hydrogen bonds can form in the studied systems, and these were shown to play an important role in defining the overall stability of the complexes. Solubility measurements were carried out in both solvents and the thermodynamics of transfer from acetonitrile to dimethyl sulfoxide were characterized on a quantitative level. This has afforded a detailed insight into the impact of the medium on the complexation reactions.

14.
Mol Divers ; 21(3): 621-636, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28667495

RESUMEN

An experimental search for new benzimidazole derivatives with enhanced antiproliferative activity was successfully guided by QSAR modelling. Robust 3D-QSAR models were derived on an available database of compounds with previously measured activities. Our QSAR analysis revealed that an increase of the antiproliferative activities towards H460, HCT 116, MCF-7 and SW 620 cells will be obtained if new compounds are charged at a pH range from 5 to 7 and if their hydrophobicity is increased compared to the dataset compounds. Novel benzimidazo[1,2-a]quinolines bearing quarternary amino groups with corresponding aliphatic chains were designed, and their antiproliferative activities were computationally predicted. Using uncatalysed microwave-assisted amination reactions, 14 novel compounds were obtained to assess their antiproliferative activities towards H460, HCT 116, MCF-7, and SW 620 tumour cell lines in vitro. Novel compounds showed antiproliferative activities at micromolar and submicromolar inhibition concentrations. Experimental measurements of antiproliferative activities validation the QSAR models showing very good agreement between experimentally measured activities and computational predictions. In an attempt to elucidate the mode of action through which benzimidazole derivatives accomplish their antiproliferative activities, thermal denaturation experiments were performed to test their DNA-binding properties.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Bencimidazoles/química , Quinolinas/síntesis química , Quinolinas/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células HCT116 , Humanos , Células MCF-7 , Mesilatos/química , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad Cuantitativa , Quinolinas/química
15.
NAR Genom Bioinform ; 6(1): lqad114, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38226394

RESUMEN

Molecular dynamics simulations generate trajectories that depict system's evolution in time and are analyzed visually and quantitatively. Commonly conducted analyses include RMSD, Rgyr, RMSF, and more. However, those methods are all limited by their strictly statistical nature. Here we present trajectory maps, a novel method to analyze and visualize protein simulation courses intuitively and conclusively. By plotting protein's backbone movements during the simulation as a heatmap, trajectory maps provide new tools to directly visualize protein behavior over time, compare multiple simulations, and complement established methods. A user-friendly Python application developed for this purpose is presented, alongside detailed documentation for easy usage and implementation. The method's validation is demonstrated on three case studies. Considering its benefits, trajectory maps are expected to adopt broad application in obtaining and communicating meaningful results of protein molecular dynamics simulations in many associated fields such as biochemistry, structural biology, pharmaceutical research etc.

16.
J Biomol Struct Dyn ; : 1-15, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345054

RESUMEN

Bacterium Halalkalibacterium halodurans is an industrially important alkalophilic bacteria. It is recognized as a producer of enzymes such as ß-galactosidase, xylanase, amylase and protease which are able to function at higher pH values and thus can be used in textile, food, paper industry and more. This bacterium, as any other bacterium, requires a sensitive mechanism for regulation of homeostasis of manganese ions (Mn2+) in order to survive. The key protein regulating this mechanism in H. halodurans is MntR - a transcriptional factor that binds to DNA and regulates the transcription of genes for proteins involved in manganese homeostasis. Long range all-atom molecular dynamics (MD) simulations, from 500 ns up to 1.25 µs, were used to study different forms of H. halodurans MntR in order to investigate the differences in the protein's structural and dynamical properties upon Mn2+ binding. Simulations revealed an allosteric mechanism which is activated by Mn2+ binding. The results of simulations show that Mn2+ binding alters the non-covalent interaction network of the protein structure which leads to a conformational change that primarily affects the positions of the DNA binding domains and, consequently, the DNA binding affinity of H. halodurans MntR. The key amino acid residues of the proposed mechanism were identified and their role in the proposed mechanism was computationally confirmed by MD simulations of in silico mutants.Communicated by Ramaswamy H. Sarma.

17.
Comput Struct Biotechnol J ; 23: 742-751, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38298178

RESUMEN

Peroxidases are essential elements in many biotechnological applications. An especially interesting concept involves split enzymes, where the enzyme is separated into two smaller and inactive proteins that can dimerize into a fully active enzyme. Such split forms were developed for the horseradish peroxidase (HRP) and ascorbate peroxidase (APX) already. Both peroxidases have a high potential for biotechnology applications. In the present study, we performed biophysical comparisons of these two peroxidases and their split analogues. The active site availability is similar for all four structures. The split enzymes are comparable in stability with their native analogues, meaning that they can be used for further biotechnology applications. Also, the tertiary structures of the two peroxidases are similar. However, differences that might help in choosing one system over another for biotechnology applications were noticed. The main difference between the two systems is glycosylation which is not present in the case of APX/sAPEX2, while it has a high impact on the HRP/sHRP stability. Further differences are calcium ions and cysteine bridges that are present only in the case of HRP/sHRP. Finally, computational results identified sAPEX2 as the systems with the smallest structural variations during molecular dynamics simulations showing its dominant stability comparing to other simulated proteins. Taken all together, the sAPEX2 system has a high potential for biotechnological applications due to the lack of glycans and cysteines, as well as due to high stability.

18.
Sci Total Environ ; 901: 165956, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37541507

RESUMEN

Zebrafish Mate3 is one of six co-orthologs of human multidrug and toxin extrusion proteins. It is highly expressed in the kidneys, intestine, testes, and brain of males. Initial interaction studies showed its interaction with xenobiotic compounds, suggesting a role in the efflux of toxic compounds. In this study, we aimed to test various environmental contaminants for their interaction with zebrafish Mate3. We developed a stable zebrafish Mate3 cell line and optimized a high-throughput screening assay using DAPI and ASP+ as fluorescent model substrates. To gain insight into the structure and function of the Mate3 protein and relate these to the results of the DAPI and ASP+ transport measurements, we predicted its 3D structure using the AlphaFold2 algorithm. A 3D structure with high per residue confidence scores with 13 transmembrane segments (TMs) was obtained, with topology and mutual positioning characteristic of the Mate protein family in a shape open to the extracellular part. Molecular docking methods were used to identify DAPI and ASP+ binding sites on the surface and in the center of the protein cavity. Because our kinetics experiments combined with molecular docking indicated that there may be additional active sites in zebrafish Mate3, additional cytotoxicity experiments were performed and highly potent Mate3 interactors were identified from a set of 55 different environmental contaminants. Our results suggest that some of the identified interactors may be of environmental concern, as their interaction with Mate3 could lead to an impairment of its normal efflux function, making fish more sensitive to harmful substances commonly released into the aquatic environment. Finally, the quality of zebrafish Mate3 structures predicted by the AlphaFold2 algorithm opens up the possibility of successfully using this tool for in silico research on transport preferences of other Mate proteins.

19.
Int J Biol Macromol ; 253(Pt 8): 127572, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37866578

RESUMEN

Divalent metal ions are essential micronutrients for many intercellular reactions. Maintaining their homeostasis is necessary for the survival of bacteria. In Streptococcus gordonii, one of the primary colonizers of the tooth surface, the cellular concentration of manganese ions (Mn2+) is regulated by the manganese-sensing transcriptional factor ScaR which controls the expression of proteins involved in manganese homeostasis. To resolve the molecular mechanism through which the binding of Mn2+ ions increases the binding affinity of ScaR to DNA, a variety of computational (QM and MD) and experimental (ITC, DSC, EMSA, EPR, and CD) methods were applied. The computational results showed that Mn2+ binding induces a conformational change in ScaR that primarily affects the position of the DNA binding domains and, consequently, the DNA binding affinity of the protein. In addition, experimental results revealed a 1:4 binding stoichiometry between ScaR dimer and Mn2+ ions, while the computational results showed that the binding of Mn2+ ions in the primary binding sites is sufficient to induce the observed conformational change of ScaR.


Asunto(s)
Proteínas Bacterianas , Streptococcus gordonii , Humanos , Streptococcus gordonii/genética , Streptococcus gordonii/metabolismo , Proteínas Bacterianas/química , Manganeso/metabolismo , Cicatriz/metabolismo , Sitios de Unión , ADN/metabolismo , Iones , Unión Proteica
20.
Enzyme Microb Technol ; 168: 110257, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37209508

RESUMEN

Within the last decade, the field of bio-nanoengineering has achieved significant advances allowing us to generate, e.g., nanoscaled molecular machineries with arbitrary shapes. To unleash the full potential of novel methods such as DNA origami technology, it is important to functionalise complex molecules and nanostructures precisely. Thus, considerable attention has been given to site-selective modifications of proteins allowing further incorporation of various functionalities. Here, we describe a method for the covalent attachment of oligonucleotides to the glycosylated horseradish peroxidase protein (HRP) with high N-terminus selectivity and significant yield while conserving the enzymatic activity. This two-step process includes a pH-controlled metal-free diazotransfer reaction using imidazole-1-sulfonyl azide hydrogen sulfate, which at pH 8.5 results in an N-terminal azide-functionalized protein, followed by the Cu-free click SPAAC reaction to dibenzocyclooctyne- (DBCO) modified oligonucleotides. The reaction conditions were optimised to achieve maximum yield and the best performance. The resulting protein-oligonucleotide conjugates (HRP-DNA) were characterised by electrophoresis and mass spectrometry (MS). Native-PAGE experiments demonstrated different migration patterns for HRP-DNA and the azido-modified protein allowing zymogram experiments. Structure-activity relationships of novel HRP-DNA conjugates were assessed using molecular dynamics simulations, characterising the molecular interactions that define the structural and dynamical properties of the obtained protein-oligonucleotide conjugates (POC).


Asunto(s)
ADN , Oligonucleótidos , Peroxidasa de Rábano Silvestre/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA