Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biomech Eng ; 145(3)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36445228

RESUMEN

Neurovascular coupling (NVC) is the ability to locally adjust vascular resistance as a function of neuronal activity. Recent experiments have illustrated that NVC is partially independent of metabolic signals. In addition, nitric oxide (NO) has been shown in some instances to provide an important mechanism in altering vascular resistance. An extension to the original model of NVC [1] has been developed to include the activation of both somatosensory neurons and GABAergic interneurons and to investigate the role of NO and the delicate balance of GABA and neuronal peptide enzymes (NPY) pathways. The numerical model is compared to murine experimental data that provides time-dependent profiles of oxy, de-oxy, and total-hemoglobin. The results indicate a delicate balance that exists between GABA and NPY when nNOS interneurons are activated mediated by NO. Whereas somatosensory neurons (producing potassium into the extracellular space) do not seem to be effected by the inhibition of NO. Further work will need to be done to investigate the role of NO when stimulation periods are increased substantially from the short pulses of 2 s as used in the above experiments.


Asunto(s)
Neuronas GABAérgicas , Acoplamiento Neurovascular , Animales , Ratones , Acoplamiento Neurovascular/fisiología , Interneuronas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
2.
Neuroimage ; 237: 118195, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34038769

RESUMEN

Cerebral blood volume (CBV) has been shown to be a robust and important physiological parameter for quantitative interpretation of functional (f)MRI, capable of delivering highly localized mapping of neural activity. Indeed, with recent advances in ultra-high-field (≥7T) MRI hardware and associated sequence libraries, it has become possible to capture non-invasive CBV weighted fMRI signals across cortical layers. One of the most widely used approaches to achieve this (in humans) is through vascular-space-occupancy (VASO) fMRI. Unfortunately, the exact contrast mechanisms of layer-dependent VASO fMRI have not been validated for human fMRI and thus interpretation of such data is confounded. Here we validate the signal source of layer-dependent SS-SI VASO fMRI using multi-modal imaging in a rat model in response to neuronal activation (somatosensory cortex) and respiratory challenge (hypercapnia). In particular VASO derived CBV measures are directly compared to concurrent measures of total haemoglobin changes from high resolution intrinsic optical imaging spectroscopy (OIS). Quantified cortical layer profiling is demonstrated to be in agreement between VASO and contrast enhanced fMRI (using monocrystalline iron oxide nanoparticles, MION). Responses show high spatial localisation to layers of cortical processing independent of confounding large draining veins which can hamper BOLD fMRI studies, (depending on slice positioning). Thus, a cross species comparison is enabled using VASO as a common measure. We find increased VASO based CBV reactivity (3.1 ± 1.2 fold increase) in humans compared to rats. Together, our findings confirm that the VASO contrast is indeed a reliable estimate of layer-specific CBV changes. This validation study increases the neuronal interpretability of human layer-dependent VASO fMRI as an appropriate method in neuroscience application studies, in which the presence of large draining intracortical and pial veins limits neuroscientific inference with BOLD fMRI.


Asunto(s)
Volumen Sanguíneo Cerebral/fisiología , Neuroimagen Funcional/normas , Imagen por Resonancia Magnética/normas , Corteza Somatosensorial/diagnóstico por imagen , Percepción del Tacto/fisiología , Adulto , Animales , Estimulación Eléctrica , Femenino , Humanos , Masculino , Imagen Óptica , Estimulación Física , Ratas , Reproducibilidad de los Resultados
3.
Neuroimage ; 171: 165-175, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29294386

RESUMEN

Whether functional hyperemia during epileptic activity is adequate to meet the heightened metabolic demand of such events is controversial. Whereas some studies have demonstrated hyperoxia during ictal onsets, other work has reported transient hypoxic episodes that are spatially dependent on local surface microvasculature. Crucially, how laminar differences in ictal evolution can affect subsequent cerebrovascular responses has not been thus far investigated, and is likely significant in view of possible laminar-dependent neurovascular mechanisms and angioarchitecture. We addressed this open question using a novel multi-modal methodology enabling concurrent measurement of cortical tissue oxygenation, blood flow and hemoglobin concentration, alongside laminar recordings of neural activity, in a urethane anesthetized rat model of recurrent seizures induced by 4-aminopyridine. We reveal there to be a close relationship between seizure epicenter depth, translaminar local field potential (LFP) synchrony and tissue oxygenation during the early stages of recurrent seizures, whereby deep layer seizures are associated with decreased cross laminar synchrony and prolonged periods of hypoxia, and middle layer seizures are accompanied by increased cross-laminar synchrony and hyperoxia. Through comparison with functional activation by somatosensory stimulation and graded hypercapnia, we show that these seizure-related cerebrovascular responses occur in the presence of conserved neural-hemodynamic and blood flow-volume coupling. Our data provide new insights into the laminar dependency of seizure-related neurovascular responses, which may reconcile inconsistent observations of seizure-related hypoxia in the literature, and highlight a potential layer-dependent vulnerability that may contribute to the harmful effects of clinical recurrent seizures. The relevance of our findings to perfusion-related functional neuroimaging techniques in epilepsy are also discussed.


Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/fisiopatología , Hiperoxia/fisiopatología , Convulsiones/fisiopatología , Animales , Circulación Cerebrovascular/fisiología , Femenino , Hemodinámica/fisiología , Ratas
4.
BMC Neurosci ; 19(1): 62, 2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30333009

RESUMEN

Efficient blood supply to the brain is of paramount importance to its normal functioning and improper blood flow can result in potentially devastating neurological consequences. Cerebral blood flow in response to neural activity is intrinsically regulated by a complex interplay between various cell types within the brain in a relationship termed neurovascular coupling. The breakdown of neurovascular coupling is evident across a wide variety of both neurological and psychiatric disorders including Alzheimer's disease. Atherosclerosis is a chronic syndrome affecting the integrity and function of major blood vessels including those that supply the brain, and it is therefore hypothesised that atherosclerosis impairs cerebral blood flow and neurovascular coupling leading to cerebrovascular dysfunction. This review will discuss the mechanisms of neurovascular coupling in health and disease and how atherosclerosis can potentially cause cerebrovascular dysfunction that may lead to cognitive decline as well as stroke. Understanding the mechanisms of neurovascular coupling in health and disease may enable us to develop potential therapies to prevent the breakdown of neurovascular coupling in the treatment of vascular brain diseases including vascular dementia, Alzheimer's disease and stroke.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Aterosclerosis/fisiopatología , Demencia Vascular/fisiopatología , Acoplamiento Neurovascular/fisiología , Animales , Encéfalo/irrigación sanguínea , Encéfalo/fisiopatología , Humanos
5.
Clin Sci (Lond) ; 132(8): 851-868, 2018 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-29712883

RESUMEN

Cerebral small vessel disease (SVD) is a major contributor to stroke, cognitive impairment and dementia with limited therapeutic interventions. There is a critical need to provide mechanistic insight and improve translation between pre-clinical research and the clinic. A 2-day workshop was held which brought together experts from several disciplines in cerebrovascular disease, dementia and cardiovascular biology, to highlight current advances in these fields, explore synergies and scope for development. These proceedings provide a summary of key talks at the workshop with a particular focus on animal models of cerebral vascular disease and dementia, mechanisms and approaches to improve translation. The outcomes of discussion groups on related themes to identify the gaps in knowledge and requirements to advance knowledge are summarized.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales/etiología , Investigación Biomédica Traslacional , Animales , Humanos
6.
Neuroimage ; 146: 575-588, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27646129

RESUMEN

It is generally recognised that event related potentials (ERPs) of electroencephalogram (EEG) primarily reflect summed post-synaptic activity of the local pyramidal neural population(s). However, it is still not understood how the positive and negative deflections (e.g. P1, N1 etc) observed in ERP recordings are related to the underlying excitatory and inhibitory post-synaptic activity. We investigated the neurogenesis of P1 and N1 in ERPs by pharmacologically manipulating inhibitory post-synaptic activity in the somatosensory cortex of rodent, and concurrently recording EEG and local field potentials (LFPs). We found that the P1 wave in the ERP and LFP of the supragranular layers is determined solely by the excitatory post-synaptic activity of the local pyramidal neural population, as is the initial segment of the N1 wave across cortical depth. The later part of the N1 wave was modulated by inhibitory post-synaptic activity, with its peak and the pulse width increasing as inhibition was reduced. These findings suggest that the temporal delay of inhibition with respect to excitation observed in intracellular recordings is also reflected in extracellular field potentials (FPs), resulting in a temporal window during which only excitatory post-synaptic activity and leak channel activity are recorded in the ERP and evoked LFP time series. Based on these findings, we provide clarification on the interpretation of P1 and N1 in terms of the excitatory and inhibitory post-synaptic activities of the local pyramidal neural population(s).


Asunto(s)
Ondas Encefálicas , Potenciales Evocados Somatosensoriales , Corteza Somatosensorial/fisiología , Animales , Electroencefalografía , Femenino , Inhibición Neural , Estimulación Física , Ratas , Percepción del Tacto/fisiología
7.
J Neurosci ; 35(11): 4641-56, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25788681

RESUMEN

Studies that use prolonged periods of sensory stimulation report associations between regional reductions in neural activity and negative blood oxygenation level-dependent (BOLD) signaling. However, the neural generators of the negative BOLD response remain to be characterized. Here, we use single-impulse electrical stimulation of the whisker pad in the anesthetized rat to identify components of the neural response that are related to "negative" hemodynamic changes in the brain. Laminar multiunit activity and local field potential recordings of neural activity were performed concurrently with two-dimensional optical imaging spectroscopy measuring hemodynamic changes. Repeated measurements over multiple stimulation trials revealed significant variations in neural responses across session and animal datasets. Within this variation, we found robust long-latency decreases (300 and 2000 ms after stimulus presentation) in gamma-band power (30-80 Hz) in the middle-superficial cortical layers in regions surrounding the activated whisker barrel cortex. This reduction in gamma frequency activity was associated with corresponding decreases in the hemodynamic responses that drive the negative BOLD signal. These findings suggest a close relationship between BOLD responses and neural events that operate over time scales that outlast the initiating sensory stimulus, and provide important insights into the neurophysiological basis of negative neuroimaging signals.


Asunto(s)
Ritmo Gamma/fisiología , Hemodinámica/fisiología , Corteza Somatosensorial/fisiología , Animales , Estimulación Eléctrica/métodos , Femenino , Predicción , Ratas , Factores de Tiempo , Vibrisas/fisiología
8.
J Neuroinflammation ; 13(1): 195, 2016 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-27557843

RESUMEN

BACKGROUND: Neurovascular coupling describes the mechanism by which the energy and oxygen demand arising from neuronal activity is met by an increase in regional blood flow, known as the haemodynamic response. Interleukin 1 (IL-1) is a pro-inflammatory cytokine and an important mediator of neuronal injury, though mechanisms through which IL-1 exerts its effects in the brain are not fully understood. In this study, we set out to investigate if increased cerebral levels of IL-1 have a negative effect on the neurovascular coupling in the cortex in response to sensory stimulation. METHODS: We used two approaches to measure the neuronal activity and haemodynamic changes in the anaesthetised rat barrel somatosensory cortex in response to mechanical whisker stimulation, before and for 6 h after intra-striatal injection of interleukin-1ß or vehicle. First, we used two-dimensional optical imaging spectroscopy (2D-OIS) to measure the size of the functional haemodynamic response, indicated by changes of oxyhaemoglobin (HbO2) and total haemoglobin (HbT) concentration. In the same animals, immunostaining of immunoglobulin G and SJC-positive extravasated neutrophils was used to confirm the pro-inflammatory effects of interleukin-1ß (IL-1ß). Second, to examine the functional coupling between neuronal activity and the haemodynamic response, we used a 'Clark-style' electrode combined with a single sharp electrode to simultaneously record local tissue oxygenation (partial pressure oxygen, pO2) in layer IV/V of the stimulated barrel cortex and multi-unit activity (MUA) together with local field potentials (LFPs), respectively. RESULTS: 2D-OIS data revealed that the size of the haemodynamic response to mechanical whisker stimulation declined over the 6 h following IL-1ß injection whereas the vehicle group remained stable, significant differences being seen after 5 h. Moreover, the size of the transient increases of neuronal LFP activity in response to whisker stimulation decreased after IL-1ß injection, significant changes compared to vehicle being seen for gamma-band activity after 1 h and beta-band activity after 3 h. The amplitude of the functional pO2 response similarly decreased after 3 h post-IL-1ß injection, whereas IL-1ß had no significant effect on the peak of whisker-stimulation-induced MUA. The stimulation-evoked increases in gamma power and pO2 correlated significantly throughout the 6 h in the vehicle group, but such a correlation was not observed in the IL-1ß-injected group. CONCLUSIONS: We conclude that intra-striatal IL-1ß decouples cortical neuronal activity from its haemodynamic response. This finding may have implications for neurological conditions where IL-1ß plays a part, especially those involving reductions in cerebral blood flow (such as stroke).


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Ritmo Gamma/efectos de los fármacos , Hemodinámica/efectos de los fármacos , Interleucina-1beta/farmacología , Oxígeno/administración & dosificación , Corteza Somatosensorial/fisiología , Análisis de Varianza , Animales , Circulación Cerebrovascular/fisiología , Ritmo Gamma/fisiología , Hemodinámica/fisiología , Hemoglobinas/metabolismo , Inmunoglobulina G/metabolismo , Masculino , Neutrófilos/metabolismo , Oxihemoglobinas/metabolismo , Estimulación Física , Ratas , Corteza Somatosensorial/efectos de los fármacos , Análisis Espectral , Vibrisas/inervación
9.
Neuroimage ; 97: 62-70, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24736180

RESUMEN

Characterization of neural and hemodynamic biomarkers of epileptic activity that can be measured using non-invasive techniques is fundamental to the accurate identification of the epileptogenic zone (EZ) in the clinical setting. Recently, oscillations at gamma-band frequencies and above (>30 Hz) have been suggested to provide valuable localizing information of the EZ and track cortical activation associated with epileptogenic processes. Although a tight coupling between gamma-band activity and hemodynamic-based signals has been consistently demonstrated in non-pathological conditions, very little is known about whether such a relationship is maintained in epilepsy and the laminar etiology of these signals. Confirmation of this relationship may elucidate the underpinnings of perfusion-based signals in epilepsy and the potential value of localizing the EZ using hemodynamic correlates of pathological rhythms. Here, we use concurrent multi-depth electrophysiology and 2-dimensional optical imaging spectroscopy to examine the coupling between multi-band neural activity and cerebral blood volume (CBV) during recurrent acute focal neocortical seizures in the urethane-anesthetized rat. We show a powerful correlation between gamma-band power (25-90 Hz) and CBV across cortical laminae, in particular layer 5, and a close association between gamma measures and multi-unit activity (MUA). Our findings provide insights into the laminar electrophysiological basis of perfusion-based imaging signals in the epileptic state and may have implications for further research using non-invasive multi-modal techniques to localize epileptogenic tissue.


Asunto(s)
Volumen Sanguíneo/fisiología , Circulación Cerebrovascular/fisiología , Electroencefalografía , Ritmo Gamma , Neocórtex/fisiopatología , Convulsiones/fisiopatología , 4-Aminopiridina , Animales , Convulsivantes , Femenino , Imagen Óptica , Ratas , Recurrencia , Convulsiones/inducido químicamente
10.
Epilepsia ; 55(9): 1423-30, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25053117

RESUMEN

OBJECTIVE: Whether epileptic events disrupt normal neurovascular coupling mechanisms locally or remotely is unclear. We sought to investigate neurovascular coupling in an acute model of focal neocortical epilepsy, both within the seizure onset zone and in contralateral homotopic cortex. METHODS: Neurovascular coupling in both ipsilateral and contralateral vibrissal cortices of the urethane-anesthetized rat were examined during recurrent 4-aminopyridine (4-AP, 15 mm, 1 µl) induced focal seizures. Local field potential (LFP) and multiunit spiking activity (MUA) were recorded via two bilaterally implanted 16-channel microelectrodes. Concurrent two-dimensional optical imaging spectroscopy was used to produce spatiotemporal maps of cerebral blood volume (CBV). RESULTS: Recurrent acute seizures in right vibrissal cortex (RVC) produced robust ipsilateral increases in LFP and MUA activity, most prominently in layer 5, that were nonlinearly correlated to local increases in CBV. In contrast, contralateral left vibrissal cortex (LVC) exhibited relatively smaller nonlaminar specific increases in neural activity coupled with a decrease in CBV, suggestive of dissociation between neural and hemodynamic responses. SIGNIFICANCE: These findings provide insights into the impact of epileptic events on the neurovascular unit, and have important implications both for the interpretation of perfusion-based imaging signals in the disorder and understanding the widespread effects of epilepsy. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.


Asunto(s)
Mapeo Encefálico , Circulación Cerebrovascular/fisiología , Epilepsia/patología , Lateralidad Funcional/fisiología , Corteza Somatosensorial/fisiopatología , 4-Aminopiridina/toxicidad , Animales , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia/inducido químicamente , Femenino , Hemodinámica/fisiología , Bloqueadores de los Canales de Potasio/toxicidad , Ratas , Recurrencia , Estadísticas no Paramétricas
11.
Neuroimage ; 66: 1-8, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23063446

RESUMEN

Detailed understanding of the haemodynamic changes that underlie non-invasive neuroimaging techniques such as blood oxygen level dependent functional magnetic resonance imaging is essential if we are to continue to extend the use of these methods for understanding brain function and dysfunction. The use of animal and in particular rodent research models has been central to these endeavours as they allow in-vivo experimental techniques that provide measurements of the haemodynamic response function at high temporal and spatial resolution. A limitation of most of this research is the use of anaesthetic agents which may disrupt or mask important features of neurovascular coupling or the haemodynamic response function. In this study we therefore measured spatiotemporal cortical haemodynamic responses to somatosensory stimulation in awake rats using optical imaging spectroscopy. Trained, restrained animals received non-noxious stimulation of the whisker pad via chronically implanted stimulating microwires whilst optical recordings were made from the contralateral somatosensory cortex through a thin cranial window. The responses we measure from un-anaesthetised animals are substantially different from those reported in previous studies which have used anaesthetised animals. These differences include biphasic response regions (initial increases in blood volume and oxygenation followed by subsequent decreases) as well as oscillations in the response time series of awake animals. These haemodynamic response features do not reflect concomitant changes in the underlying neuronal activity and therefore reflect neurovascular or cerebrovascular processes. These hitherto unreported hyperemic response dynamics may have important implications for the use of anaesthetised animal models for research into the haemodynamic response function.


Asunto(s)
Mapeo Encefálico/métodos , Potenciales Evocados Somatosensoriales/fisiología , Hemodinámica/fisiología , Corteza Somatosensorial/fisiología , Vigilia/fisiología , Animales , Imagen por Resonancia Magnética , Imagen Óptica , Estimulación Física , Ratas , Vibrisas/inervación
12.
Eur J Neurosci ; 38(6): 2902-16, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23841797

RESUMEN

Although promise exists for patterns of resting-state blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) brain connectivity to be used as biomarkers of early brain pathology, a full understanding of the nature of the relationship between neural activity and spontaneous fMRI BOLD fluctuations is required before such data can be correctly interpreted. To investigate this issue, we combined electrophysiological recordings of rapid changes in multi-laminar local field potentials from the somatosensory cortex of anaesthetized rats with concurrent two-dimensional optical imaging spectroscopy measurements of resting-state haemodynamics that underlie fluctuations in the BOLD fMRI signal. After neural 'events' were identified, their time points served to indicate the start of an epoch in the accompanying haemodynamic fluctuations. Multiple epochs for both neural 'events' and the accompanying haemodynamic fluctuations were averaged. We found that the averaged epochs of resting-state haemodynamic fluctuations taken after neural 'events' closely resembled the temporal profile of stimulus-evoked cortical haemodynamics. Furthermore, we were able to demonstrate that averaged epochs of resting-state haemodynamic fluctuations resembling the temporal profile of stimulus-evoked haemodynamics could also be found after peaks in neural activity filtered into specific electroencephalographic frequency bands (theta, alpha, beta, and gamma). This technique allows investigation of resting-state neurovascular coupling using methodologies that are directly comparable to that developed for investigating stimulus-evoked neurovascular responses.


Asunto(s)
Potenciales Evocados Somatosensoriales , Hemodinámica , Corteza Somatosensorial/irrigación sanguínea , Corteza Somatosensorial/fisiología , Animales , Femenino , Imagen por Resonancia Magnética/métodos , Estimulación Física , Ratas , Flujo Sanguíneo Regional , Descanso/fisiología
13.
J Magn Reson Imaging ; 38(3): 739-44, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23677870

RESUMEN

PURPOSE: To establish procedures for functional MRI (fMRI) in rats without the need for anesthetic agents. MATERIALS AND METHODS: Rats were trained to habituate to restraint in a harness and scanner noise. Under anesthesia, rats were then prepared with a cranial implant that permitted stabilization of the head during subsequent imaging experiments. The cranial implant included an radiofrequency (RF) coil that was used to transmit and receive radiofrequency signals during imaging. Further training was then conducted to habituate the animals to head fixation whilst in the MR scanner. RESULTS: Using this method, we were able to successfully and repeatedly record BOLD fMRI responses to hypercapnia and whisker stimulation in awake rats. Electrical stimulation of the whisker pad produced a ∼7% increase in BOLD signal in the corresponding barrel cortex as well as adjacent negative BOLD responses, whilst hypercapnia produced larger increases in BOLD signal amplitude. CONCLUSION: This methodology leaves the face and limbs free from obstruction, making possible a range of behavioral or sensory stimulation protocols. Further development of this animal model could enable traditional behavioral neuroscience techniques to be combined with modern functional neuroimaging.


Asunto(s)
Potenciales Evocados Somatosensoriales/fisiología , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/veterinaria , Prótesis e Implantes , Corteza Somatosensorial/fisiología , Tacto/fisiología , Vibrisas/fisiología , Animales , Diseño de Equipo , Análisis de Falla de Equipo , Femenino , Ratas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Vibrisas/inervación
14.
Commun Biol ; 6(1): 185, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36797344

RESUMEN

Neurovascular coupling (NVC) is a mechanism that, amongst other known and latent critical functions, ensures activated brain regions are adequately supplied with oxygen and glucose. This biological phenomenon underpins non-invasive perfusion-related neuroimaging techniques and recent reports have implicated NVC impairment in several neurodegenerative disorders. Yet, much remains unknown regarding NVC in health and disease, and only recently has there been burgeoning recognition of a close interplay with brain thermodynamics. Accordingly, we developed a novel multi-modal approach to systematically modulate cortical temperature and interrogate the spatiotemporal dynamics of sensory-evoked NVC. We show that changes in cortical temperature profoundly and intricately modulate NVC, with low temperatures associated with diminished oxygen delivery, and high temperatures inducing a distinct vascular oscillation. These observations provide novel insights into the relationship between NVC and brain thermodynamics, with important implications for brain-temperature related therapies, functional biomarkers of elevated brain temperature, and in-vivo methods to study neurovascular coupling.


Asunto(s)
Encéfalo , Acoplamiento Neurovascular , Temperatura , Acoplamiento Neurovascular/fisiología , Reconocimiento en Psicología , Oxígeno
15.
Cereb Circ Cogn Behav ; 5: 100189, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37941765

RESUMEN

Although dementia research has been dominated by Alzheimer's disease (AD), most dementia in older people is now recognised to be due to mixed pathologies, usually combining vascular and AD brain pathology. Vascular cognitive impairment (VCI), which encompasses vascular dementia (VaD) is the second most common type of dementia. Models of VCI have been delayed by limited understanding of the underlying aetiology and pathogenesis. This review by a multidisciplinary, diverse (in terms of sex, geography and career stage), cross-institute team provides a perspective on limitations to current VCI models and recommendations for improving translation and reproducibility. We discuss reproducibility, clinical features of VCI and corresponding assessments in models, human pathology, bioinformatics approaches, and data sharing. We offer recommendations for future research, particularly focusing on small vessel disease as a main underpinning disorder.

16.
Neuroimage ; 61(1): 10-20, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22440642

RESUMEN

Traditionally functional magnetic resonance imaging (fMRI) has been used to map activity in the human brain by measuring increases in the Blood Oxygenation Level Dependent (BOLD) signal. Often accompanying positive BOLD fMRI signal changes are sustained negative signal changes. Previous studies investigating the neurovascular coupling mechanisms of the negative BOLD phenomenon have used concurrent 2D-optical imaging spectroscopy (2D-OIS) and electrophysiology (Boorman et al., 2010). These experiments suggested that the negative BOLD signal in response to whisker stimulation was a result of an increase in deoxy-haemoglobin and reduced multi-unit activity in the deep cortical layers. However, Boorman et al. (2010) did not measure the BOLD and haemodynamic response concurrently and so could not quantitatively compare either the spatial maps or the 2D-OIS and fMRI time series directly. Furthermore their study utilised a homogeneous tissue model in which is predominantly sensitive to haemodynamic changes in more superficial layers. Here we test whether the 2D-OIS technique is appropriate for studies of negative BOLD. We used concurrent fMRI with 2D-OIS techniques for the investigation of the haemodynamics underlying the negative BOLD at 7 Tesla. We investigated whether optical methods could be used to accurately map and measure the negative BOLD phenomenon by using 2D-OIS haemodynamic data to derive predictions from a biophysical model of BOLD signal changes. We showed that despite the deep cortical origin of the negative BOLD response, if an appropriate heterogeneous tissue model is used in the spectroscopic analysis then 2D-OIS can be used to investigate the negative BOLD phenomenon.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Oxígeno/sangre , Análisis Espectral/métodos , Animales , Mapeo Encefálico , Circulación Cerebrovascular/fisiología , Interpretación Estadística de Datos , Campos Electromagnéticos , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Hemodinámica/fisiología , Hemoglobinas/análisis , Hemoglobinas/metabolismo , Histología , Procesamiento de Imagen Asistido por Computador , Modelos Neurológicos , Ratas , Respiración Artificial , Corteza Somatosensorial/irrigación sanguínea , Corteza Somatosensorial/fisiología
17.
Neuroimage ; 63(1): 81-94, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22759993

RESUMEN

We have developed a model of the local field potential (LFP) based on the conservation of charge, the independence principle of ionic flows and the classical Hodgkin-Huxley (HH) type intracellular model of synaptic activity. Insights were gained through the simulation of the HH intracellular model on the nonlinear relationship between the balance of synaptic conductances and that of post-synaptic currents. The latter is dependent not only on the former, but also on the temporal lag between the excitatory and inhibitory conductances, as well as the strength of the afferent signal. The proposed LFP model provides a method for decomposing the LFP recordings near the soma of layer IV pyramidal neurons in the barrel cortex of anaesthetised rats into two highly correlated components with opposite polarity. The temporal dynamics and the proportional balance of the two components are comparable to the excitatory and inhibitory post-synaptic currents computed from the HH model. This suggests that the two components of the LFP reflect the underlying excitatory and inhibitory post-synaptic currents of the local neural population. We further used the model to decompose a sequence of evoked LFP responses under repetitive electrical stimulation (5Hz) of the whisker pad. We found that as neural responses adapted, the excitatory and inhibitory components also adapted proportionately, while the temporal lag between the onsets of the two components increased during frequency adaptation. Our results demonstrated that the balance between neural excitation and inhibition can be investigated using extracellular recordings. Extension of the model to incorporate multiple compartments should allow more quantitative interpretations of surface Electroencephalography (EEG) recordings into components reflecting the excitatory, inhibitory and passive ionic current flows generated by local neural populations.


Asunto(s)
Potenciales de Acción/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Potenciales de la Membrana/fisiología , Modelos Neurológicos , Inhibición Neural/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Animales , Simulación por Computador , Humanos , Ratas
18.
Neuroimage ; 59(3): 1997-2006, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21982928

RESUMEN

Despite recent advances in alternative brain imaging technologies, functional magnetic resonance imaging (fMRI) remains the workhorse for both medical diagnosis and primary research. Indeed, the number of research articles that utilise fMRI have continued to rise unabated since its conception in 1991, despite the limitation that recorded signals originate from the cerebral vasculature rather than neural tissue. Consequently, understanding the relationship between brain activity and the resultant changes in metabolism and blood flow (neurovascular coupling) remains a vital area of research. In the past, technical constraints have restricted investigations of neurovascular coupling to cortical sites and have led to the assumption that coupling in non-cortical structures is the same as in the cortex, despite the lack of any evidence. The current study investigated neurovascular coupling in the rat using whole-brain blood oxygenation level-dependent (BOLD) fMRI and multi-channel electrophysiological recordings and measured the response to a sensory stimulus as it proceeded through brainstem, thalamic and cortical processing sites - the so-called whisker-to-barrel pathway. We found marked regional differences in the amplitude of BOLD activation in the pathway and non-linear neurovascular coupling relationships in non-cortical sites. The findings have important implications for studies that use functional brain imaging to investigate sub-cortical function and caution against the use of simple, linear mapping of imaging signals onto neural activity.


Asunto(s)
Encéfalo/anatomía & histología , Circulación Cerebrovascular/fisiología , Vías Nerviosas/anatomía & histología , Animales , Encéfalo/fisiología , Mapeo Encefálico , Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Interpretación Estadística de Datos , Imagen Eco-Planar , Electroencefalografía , Fenómenos Electrofisiológicos , Femenino , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Vías Nerviosas/fisiología , Dinámicas no Lineales , Oxígeno/sangre , Estimulación Física , Ratas , Corteza Somatosensorial/anatomía & histología , Corteza Somatosensorial/fisiología , Fijación del Tejido , Vibrisas/inervación , Vibrisas/fisiología
19.
Sci Rep ; 12(1): 6236, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35422473

RESUMEN

Investigating neurovascular coupling in awake rodents is becoming ever more popular due, in part, to our increasing knowledge of the profound impacts that anaesthesia can have upon brain physiology. Although awake imaging brings with it many advantages, we still do not fully understand how voluntary locomotion during imaging affects sensory-evoked haemodynamic responses. In this study we investigated how evoked haemodynamic responses can be affected by the amount and timing of locomotion. Using an awake imaging set up, we used 2D-Optical Imaging Spectroscopy (2D-OIS) to measure changes in cerebral haemodynamics within the sensory cortex of the brain during either 2 s whisker stimulation or spontaneous (no whisker stimulation) experiments, whilst animals could walk on a spherical treadmill. We show that locomotion alters haemodynamic responses. The amount and timing of locomotion relative to whisker stimulation is important, and can significantly impact sensory-evoked haemodynamic responses. If locomotion occurred before or during whisker stimulation, the amplitude of the stimulus-evoked haemodynamic response was significantly altered. Therefore, monitoring of locomotion during awake imaging is necessary to ensure that conclusions based on comparisons of evoked haemodynamic responses (e.g., between control and disease groups) are not confounded by the effects of locomotion.


Asunto(s)
Corteza Somatosensorial , Vigilia , Animales , Hemodinámica/fisiología , Locomoción , Ratones , Estimulación Física/métodos , Corteza Somatosensorial/fisiología , Vibrisas/fisiología , Vigilia/fisiología
20.
Elife ; 112022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35014950

RESUMEN

Neurovascular coupling is a critical brain mechanism whereby changes to blood flow accompany localised neural activity. The breakdown of neurovascular coupling is linked to the development and progression of several neurological conditions including dementia. In this study, we examined cortical haemodynamics in mouse preparations that modelled Alzheimer's disease (J20-AD) and atherosclerosis (PCSK9-ATH) between 9 and 12 m of age. We report novel findings with atherosclerosis where neurovascular decline is characterised by significantly reduced blood volume, altered levels of oxyhaemoglobin and deoxyhaemoglobin, in addition to global neuroinflammation. In the comorbid mixed model (J20-PCSK9-MIX), we report a 3 x increase in hippocampal amyloid-beta plaques. A key finding was that cortical spreading depression (CSD) due to electrode insertion into the brain was worse in the diseased animals and led to a prolonged period of hypoxia. These findings suggest that systemic atherosclerosis can be detrimental to neurovascular health and that having cardiovascular comorbidities can exacerbate pre-existing Alzheimer's-related amyloid-plaques.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Aterosclerosis/fisiopatología , Acoplamiento Neurovascular/fisiología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Aterosclerosis/sangre , Encéfalo/metabolismo , Circulación Cerebrovascular/fisiología , Depresión de Propagación Cortical , Modelos Animales de Enfermedad , Hemodinámica , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA