Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biomed Chromatogr ; 38(7): e5869, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38599336

RESUMEN

The increasing demand for honey purification and authentication necessitates the global utilization of advanced processing tools. Common honey processing techniques, such as chromatography, are commonly used to assess the quality and quantity of valuable honey. In this study, 15 honey samples were authenticated using HPLC and GC-MS chromatographic methods to analyze their pollen spectrum. Various monofloral honey samples were collected, including Acacia, Hypoestes, Lavandula, Tamarix, Trifolium, and Ziziphus species, based on accurate identification by apiarists in 2023 from the Kingdom of Saudi Arabia. Honey analysis revealed the extraction of pollen from 20 different honeybee floral species. Pollen identified from honey samples using advanced chromatographic tools revealed dominant vegetation resources: Ziziphus species (23%), Acacia species (25%), Tamarix species (34%), Lavandula species (26%), Hypoestes species (34%), and Trifolium species (31%). This study uses HPLC to extract phenolic compounds, revealing dominant protocatechuic acid (4.71 mg g-1), and GC-MS to analyze organic compounds in honey pollen. Specifically, 2-dodecanone was detected with a retention time of 7.34 min. The utilization of chromatographic tools in assessing honey samples for pollen identification provides a reliable and efficient method for determining their botanical origins, thereby contributing to the quality control and authentication of honey products.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Miel , Polen , Polen/química , Miel/análisis , Cromatografía Líquida de Alta Presión/métodos , Arabia Saudita , Cromatografía de Gases y Espectrometría de Masas/métodos , Abejas , Animales , Fenoles/análisis
2.
Biomark Res ; 12(1): 17, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308370

RESUMEN

Non-traumatic intracerebral hemorrhage (ICH) is the most common type of hemorrhagic stroke, most often occurring between the ages of 45 and 60. Hypertension is most often the cause of ICH. Less often, atherosclerosis, blood diseases, inflammatory changes in cerebral vessels, intoxication, vitamin deficiencies, and other reasons cause hemorrhages. Cerebral hemorrhage can occur by diapedesis or as a result of a ruptured vessel. This very dangerous disease is difficult to treat, requires surgery and can lead to disability or death. MicroRNAs (miRNAs) are a class of non-coding RNAs (about 18-22 nucleotides) that are involved in a variety of biological processes including cell differentiation, proliferation, apoptosis, etc., through gene repression. A growing number of studies have demonstrated miRNAs deregulation in various cardiovascular diseases, including ICH. In addition, given that computed tomography (CT) and/or magnetic resonance imaging (MRI) are either not available or do not show clear signs of possible vessel rupture, accurate and reliable analysis of circulating miRNAs in biological fluids can help in early diagnosis for prevention of ICH and prognosis patient outcome after hemorrhage. In this review, we highlight the up-to-date findings on the deregulated miRNAs in ICH, and the potential use of miRNAs in clinical settings, such as therapeutic targets and non-invasive diagnostic/prognostic biomarker tools.

3.
Noncoding RNA Res ; 9(3): 641-648, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38577017

RESUMEN

Meningiomas, characterized primarily as benign intracranial or spinal tumors, present distinctive challenges due to their variable clinical behavior, with certain cases exhibiting aggressive features linked to elevated morbidity and mortality. Despite their prevalence, the underlying molecular mechanisms governing the initiation and progression of meningiomas remain insufficiently understood. MicroRNAs (miRNAs), small endogenous non-coding RNAs orchestrating post-transcriptional gene expression, have garnered substantial attention in this context. They emerge as pivotal biomarkers and potential therapeutic targets, offering innovative avenues for managing meningiomas. Recent research delves into the intricate mechanisms by which miRNAs contribute to meningioma pathogenesis, unraveling the molecular complexities of this enigmatic tumor. Meningiomas, originating from arachnoid meningothelial cells and known for their gradual growth, constitute a significant portion of intracranial tumors. The clinical challenge lies in comprehending their progression, particularly factors associated with brain invasion and heightened recurrence rates, which remain elusive. This comprehensive review underscores the pivotal role of miRNAs, accentuating their potential to advance our comprehension of meningioma biology. Furthermore, it suggests promising directions for developing diagnostic biomarkers and therapeutic interventions, holding the promise of markedly improved patient outcomes in the face of this intricate and variable disease.

4.
Noncoding RNA Res ; 9(3): 678-686, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38577014

RESUMEN

Brain metastases represent a formidable challenge in cancer management, impacting a significant number of patients and contributing significantly to cancer-related mortality. Conventional diagnostic methods frequently fall short, underscoring the imperative for non-invasive alternatives. Non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), present promising avenues for exploration. These ncRNAs exert influence over the prognosis and treatment resistance of brain metastases, offering valuable insights into underlying mechanisms and potential therapeutic targets. Dysregulated ncRNAs have been identified in brain metastases originating from various primary cancers, unveiling opportunities for intervention and prevention. The analysis of ncRNA expression in bodily fluids, such as serum and cerebrospinal fluid, provides a noninvasive means to differentiate brain metastases from primary tumors. NcRNAs, particularly miRNAs, assume a pivotal role in orchestrating the immune response within the brain microenvironment. MiRNAs exhibit promise in diagnosing brain metastases, effectively distinguishing between normal and cancer cells, and pinpointing the tissue of origin for metastatic brain tumors. The manipulation of miRNAs holds substantial potential in cancer treatment, offering the prospect of reducing toxicity and enhancing efficacy. Given the limited treatment options and the formidable threat of brain metastases in cancer patients, non-coding RNAs, especially miRNAs, emerge as beacons of hope, serving as both diagnostic tools and therapeutic targets. Further clinical studies are imperative to validate the specificity and sensitivity of ncRNAs, potentially reshaping approaches to tackle this challenge and elevate treatment outcomes for affected patients.

5.
Noncoding RNA Res ; 9(2): 471-485, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38511055

RESUMEN

Background: Intracranial aneurysms (IAs) represent protrusions in the vascular wall, with their growth and wall thinning influenced by various factors. These processes can culminate in the rupture of the aneurysm, leading to subarachnoid hemorrhage (SAH). Unfortunately, over half of the patients prove unable to withstand SAH, succumbing to adverse outcomes despite intensive therapeutic interventions, even in premier medical facilities. This study seeks to discern the pivotal microRNAs (miRNAs) and genes associated with the formation and progression of IAs. Methods: The investigation gathered expression data of miRNAs (from GSE66240) and mRNAs (from GSE158558) within human aneurysm tissue and superficial temporal artery (STA) samples, categorizing them into IA and normal groups. This classification was based on the Gene Expression Omnibus (GEO) database. Results: A total of 70 differentially expressed microRNAs (DEMs) and 815 differentially expressed mRNAs (DEGs) were pinpointed concerning IA. Subsequently, a miRNA-mRNA network was constructed, incorporating 9 significantly upregulated DEMs and 211 significantly downregulated DEGs. Simultaneously, functional enrichment and pathway analyses were conducted on both DEMs and DEGs. Through protein-protein interaction (PPI) network analysis and functional enrichment, 9 significantly upregulated DEMs (hsa-miR-188-5p, hsa-miR-590-5p, hsa-miR-320b, hsa-miR-423-5p, hsa-miR-140-5p, hsa-miR-486-5p, hsa-miR-320a, hsa-miR-342-3p, and hsa-miR-532-5p) and 50 key genes (such as ATP6V1G1, KBTBD6, VIM, PA2G4, DYNLL1, METTL21A, MDH2, etc.) were identified, suggesting their potential significant role in IA. Among these genes, ten were notably negatively regulated by at least two key miRNAs. Conclusions: The findings of this study provide valuable insights into the potential pathogenic mechanisms underlying IA by elucidating a miRNA-mRNA network. This comprehensive approach sheds light on the intricate interplay between miRNAs and genes, offering a deeper understanding of the molecular dynamics involved in IA development and progression.

6.
iScience ; 27(5): 109791, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38736548

RESUMEN

The insufficiency of natural regeneration processes in higher organisms, including humans, underlies myocardial infarction (MI), which is one of the main causes of disability and mortality in the population of developed countries. The solution to this problem lies in the field of revealing the mechanisms of regeneration and creating on this basis new technologies for stimulating endogenous regenerative processes or replacing lost parts of tissues and organs with transplanted cells. Of great interest is the use of the so-called stromal vascular fraction (SVF), derived from autologous adipose tissue. It is known that the main functions of SVF are angiogenetic, antiapoptotic, antifibrotic, immune regulation, anti-inflammatory, and trophic. This study presents data on the possibility of using SVF, targeted regulation of its properties and reparative potential, as well as the results of research studies on its use for the restoration of damaged ischemic tissue after MI.

7.
Noncoding RNA Res ; 9(1): 203-210, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38125754

RESUMEN

Circular RNAs (circRNAs) is a fascinating covalently closed circular non-coding RNA that is abundantly present in the transcriptome of eukaryotic cells. Its versatile nature allows it to participate in a multitude of pathological and physiological processes within the organism. One of its crucial functions is acting as a microRNA sponge, modulating protein transcription levels, and forming interactions with essential RNA-binding proteins. Remarkably, circRNAs demonstrates a specific enrichment in various vital areas of the brain, including the cortex, hippocampus, white matter, and photoreceptor neurons, particularly in aging organisms. This intriguing characteristic has led scientists to explore its potential as a significant biological marker of neurodegeneration, offering promising insights into neurodegenerative diseases like Alzheimer's disease (AD). In AD, there has been an interesting observation of elevated levels of circRNAs in both peripheral blood and synaptic terminals of affected individuals. This intriguing finding raises the possibility that circRNAs may have a central role in the initiation and progression of AD. Notably, different categories of circRNAs, including HDAC9, HOMER1, Cwc27, Tulp4, and PTK2, have been implicated in driving the pathological changes associated with AD through diverse mechanisms. For instance, these circRNAs have been demonstrated to contribute to the accumulation of beta-amyloid, which is a hallmark characteristic of AD. Additionally, these circRNAs contribute to the excessive phosphorylation of tau protein, a phenomenon associated with neurofibrillary tangles, further exacerbating the disease. Moreover, they are involved in aggravating neuroinflammation, which is known to play a critical role in AD's pathogenesis. Lastly, these circRNAs can cause mitochondrial dysfunction, disrupting cellular energy production and leading to cognitive impairment. As researchers delve deeper into the intricate workings of circRNAs, they hope to unlock its full potential as a diagnostic tool and therapeutic target for neurodegenerative disorders, paving the way for innovative treatments and better management of such devastating conditions.

8.
Curr Neurovasc Res ; 20(5): 623-629, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38321905

RESUMEN

BACKGROUND: Cerebral hyperperfusion syndrome (CHS) is known as a complication after bypass surgery for Moyamoya disease (MMD). However, the incidence of CHS has not been accurately reported, and there is no consensus on the risk factors associated with it. AIM: The aim of this study was to determine the risk factors associated with postoperative CHS after surgical combined revascularization used to treat adult patients with MMD. OBJECTIVE: To assess the frequency and characteristics of CHS in patients with MMD after revascularization operations. METHODS: Patients who received combined revascularization from Jan 2021 to Nov 2022 were retrospectively reviewed. Preoperative clinical characteristics and radiographic features were recorded. Postoperative CHS after surgery were examined. Multivariate logistic regression analyses were performed to identify the risk factors for CHS. RESULTS: A total of 133 patients (141 hemispheres) were included in this study. Postoperative CHS were observed in 28 hemispheres (19.8%), including focal cerebral hyperperfusion syndrome (FCHS) in 20 hemispheres (14.2%), hemorrhage in 4 (2.8%) hemispheres, seizures in 4 (2.8%) hemispheres. The results of multivariate logistic regression analysis indicated that preoperative hypertension (OR 4.705, 95% CI 1.323 ~ 12.554, p = 0.014), cerebral hemorrhage onset (OR 5.390, 95% CI 1.408 ~ 20.642, p = 0.014) and higher Hct level (OR 1.171, 95% CI 1.051 ~ 1.305, p = 0.004) were significantly associated with CHS after combined revascularization. CONCLUSIONS: Preoperative hypertension, cerebral hemorrhage onset, and higher Hct level were independent risk factors for CHS after combined revascularization.


Asunto(s)
Revascularización Cerebral , Enfermedad de Moyamoya , Complicaciones Posoperatorias , Humanos , Enfermedad de Moyamoya/cirugía , Masculino , Femenino , Adulto , Factores de Riesgo , Revascularización Cerebral/efectos adversos , Revascularización Cerebral/métodos , Revascularización Cerebral/tendencias , Estudios Retrospectivos , Persona de Mediana Edad , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/epidemiología , Adulto Joven , Circulación Cerebrovascular/fisiología , Adolescente , Trastornos Cerebrovasculares/etiología , Trastornos Cerebrovasculares/diagnóstico por imagen , Trastornos Cerebrovasculares/epidemiología
9.
Heliyon ; 10(4): e26351, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38434059

RESUMEN

Alzheimer's disease is a neurological disorder that causes increased memory loss, mood swings, behavioral disorders, and disruptions in daily activities. Polymer scaffolds for the brain have been grown under laboratory, physiological, and pathological circumstances because of the limitations of conventional treatments for patients with central nervous system diseases. The blood-brain barrier prevents medications from entering the brain, challenging AD treatment. Numerous biomaterials such as biomolecules, polymers, inorganic metals, and metal oxide nanoparticles have been used to transport therapeutic medicines into the nervous system. Incorporating biocompatible materials that support neurogenesis through a combination of topographical, pharmacological, and mechanical stimuli has also shown promise for the transfer of cells to replenish dopaminergic neurons. Components made of naturally occurring biodegradable polymers are appropriate for the regeneration of nerve tissue. The ability of natural-based materials (biomaterials) has been shown to promote endogenous cell development after implantation. Also, strategic functionalization of polymeric nanocarriers could be employed for treating AD. In particular, nanoparticles could resolve Aß aggregation and thus help cure Alzheimer's disease. Drug moieties can be effectively directed to the brain by utilizing nano-based systems and diverse colloidal carriers, including hydrogels and biodegradable scaffolds. Notably, early investigations employing neural stem cells have yielded promising results, further emphasizing the potential advancements in this field. Few studies have fully leveraged the combination of cells with cutting-edge biomaterials. This study provides a comprehensive overview of prior research, highlighting the pivotal role of biomaterials as sophisticated drug carriers. It delves into various intelligent drug delivery systems, encompassing pH and thermo-triggered mechanisms, polymeric and lipid carriers, inorganic nanoparticles, and other vectors. The discussion synthesizes existing knowledge and underscores the transformative impact of these biomaterials in devising innovative strategies, augmenting current therapeutic methodologies, and shaping new paradigms in the realm of Alzheimer's disease treatment.

10.
Microsc Res Tech ; 87(9): 2134-2142, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38706231

RESUMEN

This research on Lamiales epidermal anatomy not only provides in-depth understanding of their structural traits but also highlights the significance of uncovering the inherent antimicrobial resilience embedded within these plants. Such insights hold promise for advancing natural product-based approaches in medicine, potentially contributing to the development of novel antimicrobial agents inspired by Lamiales unique biological defense mechanisms. Scanning microscopic tools were utilized to conduct foliar epidermal anatomy of nine species that belong to seven genera and four families within the Lamiales order, Plantaginaceae, Scrophulariaceae, Verbenaceae, and Lamiaceae. This approach aimed to gather both qualitative and quantitative data, facilitating the assessment of taxonomic microanatomical significance. The shape of epidermal cells and their anticlinal walls; number of epidermal cells, stomata, and trichomes; type of stomata and trichomes; length and width of epidermal cells, trichomes, stomatal pore, guard cells, and subsidiary cells; and stomatal index were determined statistically. Most of the species examined were amphistomatous and showed extensive array of trichomes diversity. The exploration of Lamiales epidermal micromorphology and their antimicrobial potential were significant for their implications in multidisciplinary fields. The pharmacological research to utilize sustainable agricultural practices prompts avenues to strengths of Lamiales order for the development of novel antimicrobial solutions and ecological benefits. RESEARCH HIGHLIGHTS: Diverse trichome morphometry reveals a wide array of trichome structures across Lamiales species. Epidermal microscopic architecture variability of epidermal cell shapes and sizes signifies the interspecies variability. Secondary metabolite localization within microanatomical structures elucidates potential hotspots for antimicrobial compound production.


Asunto(s)
Antiinfecciosos , Epidermis de la Planta , Tricomas , Epidermis de la Planta/química , Antiinfecciosos/farmacología , Hojas de la Planta/química , Estomas de Plantas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA