Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Biol (Stuttg) ; 26(5): 705-714, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38899579

RESUMEN

Sessile organisms, such as plants, developed various ways to sense and respond to external and internal stimuli to maximize their fitness through evolutionary time. Transcripts and protein regulation are, among many, the main mechanisms that plants use to respond to environmental changes. SKIP protein is one such, presenting an SNKW interacting domain, which is highly conserved among eukaryotes, where SKI interacting protein acts in regulating key processes. In the present work, many bioinformatics tools, such as phylogenetic relationships, gene structure, physical-chemical properties, conserved motifs, prediction of regulatory cis-elements, chromosomal localization, and protein-protein interaction network, were used to better understand the genome-wide SNW/SKIP domain-containing proteins. In total, 28 proteins containing the SNW/SKIP domain were identified in different plant species, including plants of agronomic interest. Two main protein clusters were formed in phylogenetic analysis, and gene structure analysis revealed that, in general, the coding region had no introns. Also, expression of these genes is possibly induced by abiotic stress stimuli. Primary structure analysis of the proteins revealed the existence of an evolutionarily conserved functional unit. But physicochemical properties show that proteins containing the SNW/SKIP domain are commonly unstable under in vivo conditions. In addition, the protein network, demonstrated that SKIP homologues could act by modulating plant fitness through gene expression regulation at the transcriptional and post-transcriptional levels. This could be corroborated by the expression number of gene copies of SKIP proteins in many species, highlighting it's crucial role in plant development and tolerance through the course of evolution.


Asunto(s)
Genoma de Planta , Filogenia , Proteínas de Plantas , Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Dominios Proteicos , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA