Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cancer Biomark ; 38(4): 465-487, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38073377

RESUMEN

AIM: Esophageal Squamous Cell Carcinoma (ESCC) is a histological subtype of esophageal cancer that begins in the squamous cells in the esophagus. In only 19% of the ESCC-diagnosed patients, a five-year survival rate has been seen. This necessitates the identification of high-confidence biomarkers for early diagnosis, prognosis, and potential therapeutic targets for the mitigation of ESCC. METHOD: We performed a meta-analysis of 10 mRNA datasets and identified consistently perturbed genes across the studies. Then, integrated with ESCC ATLAS to segregate 'core' genes to identify consequences of primary gene perturbation events leading to gene-gene interactions and dysregulated molecular signaling pathways. Further, by integrating with toxicogenomics data, inferences were drawn for gene interaction with environmental exposures, trace elements, chemical carcinogens, and drug chemicals. We also deduce the clinical outcomes of candidate genes based on survival analysis using the ESCC related dataset in The Cancer Genome Atlas. RESULT: We identified 237 known and 18 novel perturbed candidate genes. Desmoglein 1 (DSG1) is one such gene that we found significantly downregulated (Fold Change =-1.89, p-value = 8.2e-06) in ESCC across six different datasets. Further, we identified 31 'core' genes (that either harbor genetic variants or are regulated by epigenetic modifications) and found regulating key biological pathways via adjoining genes in gene-gene interaction networks. Functional enrichment analysis showed dysregulated biological processes and pathways including "Extracellular matrix", "Collagen trimmer" and "HPV infection" are significantly overrepresented in our candidate genes. Based on the toxicogenomic inferences from Comparative Toxicogenomics Database we report the key genes that interacted with risk factors such as tobacco smoking, zinc, nitroso benzylmethylamine, and drug chemicals such as cisplatin, Fluorouracil, and Mitomycin in relation to ESCC. We also point to the STC2 gene that shows a high risk for mortality in ESCC patients. CONCLUSION: We identified novel perturbed genes in relation to ESCC and explored their interaction network. DSG1 is one such gene, its association with microbiota and a clinical presentation seen commonly with ESCC hints that it is a good candidate for early diagnostic marker. Besides, in this study we highlight candidate genes and their molecular connections to risk factors, biological pathways, drug chemicals, and the survival probability of ESCC patients.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias Esofágicas/patología , Desmogleína 1/genética , Desmogleína 1/metabolismo , Regulación hacia Abajo , Perfilación de la Expresión Génica , Biología Computacional , Genómica , Pronóstico , ARN Mensajero/genética , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética
2.
Infect Agent Cancer ; 18(1): 47, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37641095

RESUMEN

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) has a poor prognosis and is one of the deadliest gastrointestinal malignancies. Despite numerous transcriptomics studies to understand its molecular basis, the impact of population-specific differences on this disease remains unexplored. AIMS: This study aimed to investigate the population-specific differences in gene expression patterns among ESCC samples obtained from six distinct global populations, identify differentially expressed genes (DEGs) and their associated pathways, and identify potential biomarkers for ESCC diagnosis and prognosis. In addition, this study deciphers population specific microbial and chemical risk factors in ESCC. METHODS: We compared the gene expression patterns of ESCC samples from six different global populations by analyzing microarray datasets. To identify DEGs, we conducted stringent quality control and employed linear modeling. We cross-compared the resulting DEG lists of each populations along with ESCC ATLAS to identify known and novel DEGs. We performed a survival analysis using The Cancer Genome Atlas Program (TCGA) data to identify potential biomarkers for ESCC diagnosis and prognosis among the novel DEGs. Finally, we performed comparative functional enrichment and toxicogenomic analysis. RESULTS: Here we report 19 genes with distinct expression patterns among populations, indicating population-specific variations in ESCC. Additionally, we discovered 166 novel DEGs, such as ENDOU, SLCO1B3, KCNS3, IFI35, among others. The survival analysis identified three novel genes (CHRM3, CREG2, H2AC6) critical for ESCC survival. Notably, our findings showed that ECM-related gene ontology terms and pathways were significantly enriched among the DEGs in ESCC. We also found population-specific variations in immune response and microbial infection-related pathways which included genes enriched for HPV, Ameobiosis, Leishmaniosis, and Human Cytomegaloviruses. Our toxicogenomic analysis identified tobacco smoking as the primary risk factor and cisplatin as the main drug chemical interacting with the maximum number of DEGs across populations. CONCLUSION: This study provides new insights into population-specific differences in gene expression patterns and their associated pathways in ESCC. Our findings suggest that changes in extracellular matrix (ECM) organization may be crucial to the development and progression of this cancer, and that environmental and genetic factors play important roles in the disease. The novel DEGs identified may serve as potential biomarkers for diagnosis, prognosis and treatment.

3.
Indian J Hum Genet ; 17 Suppl 1: S48-53, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21747588

RESUMEN

BACKGROUND: Genetic variations represented as single nucleotide polymorphisms (SNPs) vary across the world population. This genetic polymorphism (such as SNPs) plays an important role in pharmacogenomics. SNPs that affects cellular metabolism, by altering the enzyme activity, have an important role in therapeutic outcome. Allele frequencies in number of clinically relevant SNPs within south Indian populations are not yet known. Hence, we genotyped randomly selected unrelated south Indian subjects from different locations of south India representing the heterogeneous ethnic background of the population. MATERIALS AND METHODS: Common variants of MTHFD1, TYMS, SHMT1, MTR, MTRR, CBS and SULT1A1 gene polymorphisms were screened from healthy unrelated south Indian volunteers. Genotypes were determined using RFLP analysis of polymerase chain reaction-amplified products and confirmed by DNA sequencing. Chi-square test was performed to test for deviation from the Hardy-Weinberg equilibrium for each locus. RESULTS: Gene allele frequency for several polymorphisms in our study differed significantly between the populations of other nations reported for several of the SNPs. These results demonstrate that the populations in different geographic regions may have widely varying genetic allele frequencies for clinically relevant SNPs. CONCLUSION: The present study reports, for the first time, the frequency distribution of MTHFD1, TYMS, SHMT1, MTR, MTRR, CBS and SULTIA1 gene polymorphisms in a south Indian population. Population-specific genetic polymorphism studies will help in practicing pharmacogenomic principles in the clinics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA