RESUMEN
In this study, chlorhexidine (CHX)-silver (Ag) hybrid nanoparticles (NPs) coated gauze was developed, and their bactericidal effect and in vivo wound healing capacities were tested. A new method was developed to synthesise the NPs, wherein Ag nitrate mixed with sodium (Na) metaphosphate and reduced using Na borohydride. Finally, CHX digluconate was added to form the hybrid NPs. To study the antibacterial efficacy of particles, the minimal inhibition concentration and biofilm degradation capacity against Gram-positive and Gram-negative bacteria was studied using Escherichia coli and Staphylococcus aureus. The results indicated that the NP inhibited biofilm formation and was bactericidal as well. The gauze was doped with NPs, and its wound healing property was evaluated using mice model. Results indicated that the wound healing process was fastened by using the NPs gauze doped with NPs without the administration of antibiotics.
Asunto(s)
Antibacterianos , Vendajes , Clorhexidina/análogos & derivados , Nanopartículas del Metal/química , Cicatrización de Heridas/efectos de los fármacos , Animales , Antibacterianos/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Clorhexidina/química , Clorhexidina/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Plata/química , Plata/farmacologíaRESUMEN
In this study, the ketoconazole-conjugated zinc oxide (ZnO) nanoparticles were prepared in a single-step approach using dextrose as an intermediate compound. The physical parameters confirmed the drug conjugation with ZnO and their size was around 70-75â nm. The drug loading and in vivo drug release studies indicated that the -CHO group from the dextrose increase the drug loading up to 65% and their release kinetics were also studied. The anti-fungal studies indicated that the prepared nanoparticles exhibit strong anti-fungal activity and the minimum concentration needed is 10â mg/ml. The nanoparticles loaded semi-solid gel was prepared using carbopol, methylparaben, propyl paraben and propylene glycol. The in vitro penetration of the ketoconazole-conjugated nanoparticles was studied using the skin. The results indicated that the semi-solid gel preparations influenced the penetration and also favoured the accumulation into the skin membrane. The veterinary clinical studies indicated that the prepared gel is highly suitable for treatment of Malassezia.