Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Methods ; 225: 44-51, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518843

RESUMEN

The process of virtual screening relies heavily on the databases, but it is disadvantageous to conduct virtual screening based on commercial databases with patent-protected compounds, high compound toxicity and side effects. Therefore, this paper utilizes generative recurrent neural networks (RNN) containing long short-term memory (LSTM) cells to learn the properties of drug compounds in the DrugBank, aiming to obtain a new and virtual screening compounds database with drug-like properties. Ultimately, a compounds database consisting of 26,316 compounds is obtained by this method. To evaluate the potential of this compounds database, a series of tests are performed, including chemical space, ADME properties, compound fragmentation, and synthesizability analysis. As a result, it is proved that the database is equipped with good drug-like properties and a relatively new backbone, its potential in virtual screening is further tested. Finally, a series of seedling compounds with completely new backbones are obtained through docking and binding free energy calculations.


Asunto(s)
Aprendizaje Profundo , Simulación del Acoplamiento Molecular , Simulación del Acoplamiento Molecular/métodos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Evaluación Preclínica de Medicamentos/métodos , Humanos , Bases de Datos Farmacéuticas , Redes Neurales de la Computación , Bases de Datos de Compuestos Químicos
2.
J Phys Chem B ; 128(15): 3598-3604, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38574232

RESUMEN

We demonstrate that the binding affinity of a multichain protein-protein complex, insulin dimer, can be accurately predicted using a streamlined route of standard binding free-energy calculations. We find that chains A and C, which do not interact directly during binding, stabilize the insulin monomer structures and reduce the binding affinity of the two monomers, therefore enabling their reversible association. Notably, we confirm that although classical methods can estimate the binding affinity of the insulin dimer, conventional molecular dynamics, enhanced sampling algorithms, and classical geometrical routes of binding free-energy calculations may not fully capture certain aspects of the role played by the noninteracting chains in the binding dynamics. Therefore, this study not only elucidates the role of noninteracting chains in the reversible binding of the insulin dimer but also offers a methodological guide for investigating the reversible binding of multichain protein-protein complexes utilizing streamlined free-energy calculations.


Asunto(s)
Insulina , Simulación de Dinámica Molecular , Entropía , Insulina/química , Unión Proteica , Termodinámica
3.
J Phys Chem Lett ; 15(6): 1774-1783, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38329095

RESUMEN

Enhanced-sampling algorithms relying on collective variables (CVs) are extensively employed to study complex (bio)chemical processes that are not amenable to brute-force molecular simulations. The selection of appropriate CVs characterizing the slow movement modes is of paramount importance for reliable and efficient enhanced-sampling simulations. In this Perspective, we first review the application and limitations of CVs obtained from chemical and geometrical intuition. We also introduce path-sampling algorithms, which can identify path-like CVs in a high-dimensional free-energy space. Machine-learning algorithms offer a viable approach to finding suitable CVs by analyzing trajectories from preliminary simulations. We discuss both the performance of machine-learning-derived CVs in enhanced-sampling simulations of experimental models and the challenges involved in applying these CVs to realistic, complex molecular assemblies. Moreover, we provide a prospective view of the potential advancements of machine-learning algorithms for the development of CVs in the field of enhanced-sampling simulations.


Asunto(s)
Algoritmos , Simulación de Dinámica Molecular , Humanos , Estudios Prospectivos , Entropía , Aprendizaje Automático
4.
Front Chem ; 10: 933102, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903186

RESUMEN

Desired drug candidates should have both a high potential binding chance and high specificity. Recently, many drug screening strategies have been developed to screen compounds with high possible binding chances or high binding affinity. However, there is still no good solution to detect whether those selected compounds possess high specificity. Here, we developed a reverse DFCNN (Dense Fully Connected Neural Network) and a reverse docking protocol to check a given compound's ability to bind diversified targets and estimate its specificity with homemade formulas. We used the RNA-dependent RNA polymerase (RdRp) target as a proof-of-concept example to identify drug candidates with high selectivity and high specificity. We first used a previously developed hybrid screening method to find drug candidates from an 8888-size compound database. The hybrid screening method takes advantage of the deep learning-based method, traditional molecular docking, molecular dynamics simulation, and binding free energy calculated by metadynamics, which should be powerful in selecting high binding affinity candidates. Also, we integrated the reverse DFCNN and reversed docking against a diversified 102 proteins to the pipeline for assessing the specificity of those selected candidates, and finally got compounds that have both predicted selectivity and specificity. Among the eight selected candidates, Platycodin D and Tubeimoside III were confirmed to effectively inhibit SARS-CoV-2 replication in vitro with EC50 values of 619.5 and 265.5 nM, respectively. Our study discovered that Tubeimoside III could inhibit SARS-CoV-2 replication potently for the first time. Furthermore, the underlying mechanisms of Platycodin D and Tubeimoside III inhibiting SARS-CoV-2 are highly possible by blocking the RdRp cavity according to our screening procedure. In addition, the careful analysis predicted common critical residues involved in the binding with active inhibitors Platycodin D and Tubeimoside III, Azithromycin, and Pralatrexate, which hopefully promote the development of non-covalent binding inhibitors against RdRp.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA