RESUMEN
The fatty acids (FAs) metabolism is suggested to play a pivotal role in the development of lung cancer, and we explored that by conducting a pathway-based analysis. We performed a meta-analysis of published datasets of six genome wide association studies (GWASs) from the Transdisciplinary Research in Cancer of the Lung (TRICL) consortium, which included 12 160 cases with lung cancer and 16 838 cancer-free controls. A total of 30 722 single-nucleotide polymorphisms (SNPs) from 317 genes relevant to FA metabolic pathways were identified. An additional dataset from the Harvard Lung Cancer Study with 984 cases and 970 healthy controls was also added to the final meta-analysis. In the initial meta-analysis, 26 of 28 SNPs that passed false discovery rate multiple tests were mapped to the CYP4F3 gene. Among the 26 top ranked hits was a proxy SNP, CYP4F3 rs4646904 (P = 8.65 × 10-6 , FDR = 0.018), which is suggested to change splicing pattern/efficiency and to be associated with gene expression levels. However, after adding data of rs4646904 from the Harvard GWAS, the significance in the combined analysis was reduced to P = 3.52 × 10-3 [odds ratio (OR) = 1.07, 95% confidence interval (95%CI) = 1.03-1.12]. Interestingly, the small Harvard dataset also pointed to the same direction of the association in subgroups of smokers (OR = 1.07) and contributed to a combined OR of 1.13 (95% CI = 1.06-1.20, P = 6.70 × 10-5 ). The results suggest that a potentially functional SNP in CYP4F3 (rs4646904) may contribute to the etiology of lung cancer, especially in smokers. Additional mechanistic studies are warranted to unravel the potential biological significance of the finding.
Asunto(s)
Familia 4 del Citocromo P450/genética , Neoplasias Pulmonares/genética , Polimorfismo de Nucleótido Simple , Familia 4 del Citocromo P450/metabolismo , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Sitios Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Neoplasias Pulmonares/metabolismo , Transducción de SeñalRESUMEN
Limited efforts have been made in assessing the effect of genome-wide profiling of RNA splicing-related variation on lung cancer risk. In the present study, we first identified RNA splicing-related genetic variants linked to lung cancer in a genome-wide profiling analysis and then conducted a two-stage (discovery and replication) association study in populations of European ancestry. Discovery and validation were conducted sequentially with a total of 29,266 cases and 56,450 controls from both the Transdisciplinary Research in Cancer of the Lung and the International Lung Cancer Consortium as well as the OncoArray database. For those variants identified as significant in the two datasets, we further performed stratified analyses by smoking status and histological type and investigated their effects on gene expression and potential regulatory mechanisms. We identified three genetic variants significantly associated with lung cancer risk: rs329118 in JADE2 (P = 8.80E-09), rs2285521 in GGA2 (P = 4.43E-08), and rs198459 in MYRF (P = 1.60E-06). The combined effects of all three SNPs were more evident in lung squamous cell carcinomas (P = 1.81E-08, P = 6.21E-08, and P = 7.93E-04, respectively) than in lung adenocarcinomas and in ever smokers (P = 9.80E-05, P = 2.70E-04, and P = 2.90E-05, respectively) than in never smokers. Gene expression quantitative trait analysis suggested a role for the SNPs in regulating transcriptional expression of the corresponding target genes. In conclusion, we report that three RNA splicing-related genetic variants contribute to lung cancer susceptibility in European populations. However, additional validation is needed, and specific splicing mechanisms of the target genes underlying the observed associations also warrants further exploration.
RESUMEN
BACKGROUND: Platelets are a critical element in coagulation and inflammation, and activated platelets are linked to cancer risk through diverse mechanisms. However, a causal relationship between platelets and risk of lung cancer remains unclear. METHODS: We performed single and combined multiple instrumental variable Mendelian randomization analysis by an inverse-weighted method, in addition to a series of sensitivity analyses. Summary data for associations between SNPs and platelet count are from a recent publication that included 48,666 Caucasian Europeans, and the International Lung Cancer Consortium and Transdisciplinary Research in Cancer of the Lung data consisting of 29,266 cases and 56,450 controls to analyze associations between candidate SNPs and lung cancer risk. RESULTS: Multiple instrumental variable analysis incorporating six SNPs showed a 62% increased risk of overall non-small cell lung cancer [NSCLC; OR, 1.62; 95% confidence interval (CI), 1.15-2.27; P = 0.005] and a 200% increased risk for small-cell lung cancer (OR, 3.00; 95% CI, 1.27-7.06; P = 0.01). Results showed only a trending association with NSCLC histologic subtypes, which may be due to insufficient sample size and/or weak effect size. A series of sensitivity analysis retained these findings. CONCLUSIONS: Our findings suggest a causal relationship between elevated platelet count and increased risk of lung cancer and provide evidence of possible antiplatelet interventions for lung cancer prevention. IMPACT: These findings provide a better understanding of lung cancer etiology and potential evidence for antiplatelet interventions for lung cancer prevention.
Asunto(s)
Adenocarcinoma del Pulmón/sangre , Plaquetas/patología , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Células Escamosas/sangre , Neoplasias Pulmonares/sangre , Carcinoma Pulmonar de Células Pequeñas/sangre , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Análisis de la Aleatorización Mendeliana , Recuento de Plaquetas , Polimorfismo de Nucleótido Simple , Pronóstico , Factores de Riesgo , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patologíaRESUMEN
The polymorphism SNP309 (rs2279744) in the promoter region of the MDM2 gene has been shown to alter protein expression and may play a role in the susceptibility to lung cancer. The MDM2 protein is a key inhibitor of p53 and several mechanisms of MDM2/p53 interactions are presently known: modulating DNA-repair, cell-cycle control, cell growth and apoptosis.We used 635 Caucasian patients diagnosed with lung cancer before 51 years of age and 1300 healthy gender and age frequency matched population Caucasian controls to investigate the association between the MDM2 SNP309 and the risk of developing early onset lung cancer. Conditional logistic models were applied to assess the genotype-phenotype association, adjusted for smoking. Compared to the GG genotype, the adjusted ORs for the TG and TT genotype were 0.9 (95% CI: 0.7-1.5) and 1.0 (95% CI: 0.7-1.5), respectively. Also no association was found for histological subtypes of lung cancer. The strength of this study is that within young cases the genetic component to develop lung cancer may be greater. Our results indicate that the MDM2 SNP309 is not significantly associated with lung carcinogenesis but point towards gender-specific differences.
Asunto(s)
Predisposición Genética a la Enfermedad , Neoplasias Pulmonares/genética , Polimorfismo Genético , Proteínas Proto-Oncogénicas c-mdm2/genética , Fumar/genética , Adulto , Estudios de Casos y Controles , Causalidad , Comorbilidad , Femenino , Humanos , Modelos Logísticos , Neoplasias Pulmonares/epidemiología , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Factores de Riesgo , Fumar/epidemiologíaRESUMEN
The T-cell protein tyrosine phosphatase (TCPTP) pathway consists of signaling events mediated by TCPTP. Mutations and genetic variants of some genes in the TCPTP pathway are associated with lung cancer risk and survival. In the present study, we first investigated associations of 5,162 single nucleotide polymorphisms (SNPs) in 43 genes of this TCPTP pathway with lung cancer risk by using summary data of six published genome-wide association studies (GWAS) of 12,160 cases and 16,838 controls. We identified 11 independent SNPs in eight genes after correction for multiple comparisons by a false discovery rate <0.20. Then, we performed in silico functional analyses for these 11 SNPs by eQTL analysis, two of which, PTPN2 SNPs rs2847297 and rs2847282, were chosen as tagSNPs. We further included two additional GWAS datasets of Harvard University (984 cases and 970 controls) and deCODE (1,319 cases and 26,380 controls), and the overall effects of these two SNPs among all eight GWAS studies remained significant (OR = 0.95, 95% CI = 0.92-0.98, and P = 0.004 for rs2847297; OR = 0.95, 95% CI = 0.92-0.99, and P = 0.009 for rs2847282). In conclusion, the PTPN2 rs2847297 and rs2847282 may be potential susceptible loci for lung cancer risk.
Asunto(s)
Neoplasias Pulmonares/genética , Polimorfismo de Nucleótido Simple , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Estudio de Asociación del Genoma Completo , HumanosRESUMEN
Lung cancer etiology is multifactorial, and growing evidence has indicated that long non-coding RNAs (lncRNAs) are important players in lung carcinogenesis. We performed a large-scale meta-analysis of 690,564 SNPs in 15,531 autosomal lncRNAs by using datasets from six previously published genome-wide association studies (GWASs) from the Transdisciplinary Research in Cancer of the Lung (TRICL) consortium in populations of European ancestry. Previously unreported significant SNPs (P value < 1 × 10-7) were further validated in two additional independent lung cancer GWAS datasets from Harvard University and deCODE. In the final meta-analysis of all eight GWAS datasets with 17,153 cases and 239,337 controls, a novel risk SNP rs114020893 in the lncRNA NEXN-AS1 region at 1p31.1 remained statistically significant (odds ratio = 1.17; 95% confidence interval = 1.11-1.24; P = 8.31 × 10-9). In further in silico analysis, rs114020893 was predicted to change the secondary structure of the lncRNA. Our finding indicates that SNP rs114020893 of NEXN-AS1 at 1p31.1 may contribute to lung cancer susceptibility.
Asunto(s)
Neoplasias Pulmonares/genética , Conformación de Ácido Nucleico , Polimorfismo de Nucleótido Simple , ARN Largo no Codificante/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Factores de RiesgoRESUMEN
To answer the question as to which commercial high-density SNP chip covers most of the human genome given a fixed budget, we compared the performance of 12 chips of different sizes released by Affymetrix and Illumina for the European, Asian, and African populations. These include Affymetrix' relatively new population-optimized arrays, whose SNP sets are each tailored toward a specific ethnicity. Our evaluation of the chips included the use of two measures, efficiency and cost-benefit ratio, which we developed as supplements to genetic coverage. Unlike coverage, these measures factor in the price of a chip or its substitute size (number of SNPs on chip), allowing comparisons to be drawn between differently priced chips. In this fashion, we identified the Affymetrix population-optimized arrays as offering the most cost-effective coverage for the Asian and African population. For the European population, we established the Illumina Human Omni 2.5-8 as the preferred choice. Interestingly, the Affymetrix chip tailored toward an Eastern Asian subpopulation performed well for all three populations investigated. However, our coverage estimates calculated for all chips proved much lower than those advertised by the producers. All our analyses were based on the 1000 Genome Project as reference population.