Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 290(20): 12964-74, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25829496

RESUMEN

TRPV3 is a thermosensitive ion channel primarily expressed in epithelial tissues of the skin, nose, and tongue. The channel has been implicated in environmental thermosensation, hyperalgesia in inflamed tissues, skin sensitization, and hair growth. Although transient receptor potential (TRP) channel research has vastly increased our understanding of the physiological mechanisms of nociception and thermosensation, the molecular mechanics of these ion channels are still largely elusive. In order to better comprehend the functional properties and the mechanism of action in TRP channels, high-resolution three-dimensional structures are indispensable, because they will yield the necessary insights into architectural intimacies at the atomic level. However, structural studies of membrane proteins are currently hampered by difficulties in protein purification and in establishing suitable crystallization conditions. In this report, we present a novel protocol for the purification of membrane proteins, which takes advantage of a C-terminal GFP fusion. Using this protocol, we purified human TRPV3. We show that the purified protein is a fully functional ion channel with properties akin to the native channel using planar patch clamp on reconstituted channels and intrinsic tryptophan fluorescence spectroscopy. Using intrinsic tryptophan fluorescence spectroscopy, we reveal clear distinctions in the molecular interaction of different ligands with the channel. Altogether, this study provides powerful tools to broaden our understanding of ligand interaction with TRPV channels, and the availability of purified human TRPV3 opens up perspectives for further structural and functional studies.


Asunto(s)
Canales Catiónicos TRPV/química , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ligandos , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Espectrometría de Fluorescencia , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Triptófano/química , Triptófano/genética , Triptófano/metabolismo
2.
Proc Natl Acad Sci U S A ; 109(23): 9173-8, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22619328

RESUMEN

Partial agonists of the α4ß2 nicotinic acetylcholine receptor (nAChR), such as varenicline, are therapeutically used in smoking cessation treatment. These drugs derive their therapeutic effect from fundamental molecular actions, which are to desensitize α4ß2 nAChRs and induce channel opening with higher affinity, but lower efficacy than a full agonist at equal receptor occupancy. Here, we report X-ray crystal structures of a unique acetylcholine binding protein (AChBP) from the annelid Capitella teleta, Ct-AChBP, in complex with varenicline or lobeline, which are both partial agonists. These structures highlight the architecture for molecular recognition of these ligands, indicating the contact residues that potentially mediate their molecular actions in α4ß2 nAChRs. We then used structure-guided mutagenesis and electrophysiological recordings to pinpoint crucial interactions of varenicline with residues on the complementary face of the binding site in α4ß2 nAChRs. We observe that residues in loops D and E are molecular determinants of desensitization and channel opening with limited efficacy by the partial agonist varenicline. Together, this study analyzes molecular recognition of smoking cessation drugs by nAChRs in a structural context.


Asunto(s)
Benzazepinas/farmacología , Proteínas Portadoras/química , Modelos Moleculares , Agonistas Nicotínicos/farmacología , Poliquetos/química , Quinoxalinas/farmacología , Prevención del Hábito de Fumar , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida , Canales Iónicos/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Receptores Nicotínicos/metabolismo , Análisis de Secuencia de ADN , Fumar/metabolismo , Dispositivos para Dejar de Fumar Tabaco , Vareniclina , Xenopus laevis
3.
J Biol Chem ; 288(12): 8355-8364, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23364792

RESUMEN

Pentameric ligand-gated ion channels (pLGICs), such as nicotinic acetylcholine, glycine, γ-aminobutyric acid GABA(A/C) receptors, and the Gloeobacter violaceus ligand-gated ion channel (GLIC), are receptors that contain multiple allosteric binding sites for a variety of therapeutics, including general anesthetics. Here, we report the x-ray crystal structure of the Erwinia chrysanthemi ligand-gated ion channel (ELIC) in complex with a derivative of chloroform, which reveals important features of anesthetic recognition, involving multiple binding at three different sites. One site is located in the channel pore and equates with a noncompetitive inhibitor site found in many pLGICs. A second transmembrane site is novel and is located in the lower part of the transmembrane domain, at an interface formed between adjacent subunits. A third site is also novel and is located in the extracellular domain in a hydrophobic pocket between the ß7-ß10 strands. Together, these results extend our understanding of pLGIC modulation and reveal several specific binding interactions that may contribute to modulator recognition, further substantiating a multisite model of allosteric modulation in this family of ion channels.


Asunto(s)
Anestésicos por Inhalación/química , Proteínas Bacterianas/química , Dickeya chrysanthemi , Canales Iónicos Activados por Ligandos/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Sitios de Unión , Cloroformo/química , Cloroformo/farmacología , Cristalografía por Rayos X , Potenciales de la Membrana/efectos de los fármacos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Oocitos/fisiología , Técnicas de Placa-Clamp , Unión Proteica , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Trihalometanos/química , Trihalometanos/farmacología , Xenopus laevis
4.
J Biol Chem ; 285(24): 18545-54, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20385552

RESUMEN

Spider venoms provide a highly valuable source of peptide toxins that act on a wide diversity of membrane-bound receptors and ion channels. In this work, we report isolation, biochemical analysis, and pharmacological characterization of a novel family of spider peptide toxins, designated beta/delta-agatoxins. These toxins consist of 36-38 amino acid residues and originate from the venom of the agelenid funnel-web spider Agelena orientalis. The presented toxins show considerable amino acid sequence similarity to other known toxins such as mu-agatoxins, curtatoxins, and delta-palutoxins-IT from the related spiders Agelenopsis aperta, Hololena curta, and Paracoelotes luctuosus. beta/delta-Agatoxins modulate the insect Na(V) channel (DmNa(V)1/tipE) in a unique manner, with both the activation and inactivation processes being affected. The voltage dependence of activation is shifted toward more hyperpolarized potentials (analogous to site 4 toxins) and a non-inactivating persistent Na(+) current is induced (site 3-like action). Interestingly, both effects take place in a voltage-dependent manner, producing a bell-shaped curve between -80 and 0 mV, and they are absent in mammalian Na(V) channels. To the best of our knowledge, this is the first detailed report of peptide toxins with such a peculiar pharmacological behavior, clearly indicating that traditional classification of toxins according to their binding sites may not be as exclusive as previously assumed.


Asunto(s)
Canales de Sodio/química , Venenos de Araña/química , Toxinas Biológicas/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Membrana Celular/metabolismo , Disulfuros/química , Electrofisiología/métodos , Insectos , Iones , Espectrometría de Masas/métodos , Datos de Secuencia Molecular , Oocitos/metabolismo , Técnicas de Placa-Clamp , Péptidos/química , Homología de Secuencia de Aminoácido , Arañas , Xenopus laevis
5.
Toxicon ; 52(2): 309-17, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18606177

RESUMEN

Two new polypeptide toxins named Hm-1 and Hm-2 were isolated from the venom of the crab spider Heriaeus melloteei. These toxins consist of 37 and 40 amino acid residues, respectively, contain three intramolecular disulfide bonds, and presumably adopt the inhibitor cystine knot motif. Hm-1 is C-terminally amidated and shows a low degree of homology to spider toxins agelenin and micro-agatoxin-II, whereas Hm-2 has no relevantly related peptide sequences. Hm-1 and Hm-2 were found to act on mammalian voltage-gated Na(+) channels. Both toxins caused a strong decrease of Na(+) current peak amplitude, with IC(50) values of 336.4 and 154.8 nM, respectively, on Na(V)1.4. Hm-1 and Hm-2 did not shift the voltage-dependence of activation, nor did they change the kinetics of fast inactivation of the Na(+) currents. Interestingly, both toxins negatively shifted the steady-state inactivation process, which might have important functional consequences in vivo. However, this hyperpolarizing shift cannot by itself explain the observed inhibition of the Na(+) current, indicating that the two presented toxins could provide important structural information about the interaction of polypeptide inhibitors with voltage-gated Na(+) channels.


Asunto(s)
Neurotoxinas/química , Bloqueadores de los Canales de Sodio/química , Canales de Sodio/efectos de los fármacos , Venenos de Araña/química , Arañas/fisiología , Secuencia de Aminoácidos , Animales , Relación Dosis-Respuesta a Droga , Conductividad Eléctrica , Electrofisiología , Femenino , Datos de Secuencia Molecular , Neurotoxinas/toxicidad , Óvulo/efectos de los fármacos , Óvulo/metabolismo , Técnicas de Placa-Clamp , Isoformas de Proteínas , Análisis de Secuencia de Proteína , Bloqueadores de los Canales de Sodio/toxicidad , Canales de Sodio/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Xenopus laevis
6.
Biochem Pharmacol ; 82(1): 81-90, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21477583

RESUMEN

Sea anemone venom is a known source of interesting bioactive compounds, including peptide toxins which are invaluable tools for studying structure and function of voltage-gated potassium channels. APEKTx1 is a novel peptide isolated from the sea anemone Anthopleura elegantissima, containing 63 amino acids cross-linked by 3 disulfide bridges. Sequence alignment reveals that APEKTx1 is a new member of the type 2 sea anemone peptides targeting voltage-gated potassium channels (K(V)s), which also include the kalicludines from Anemonia sulcata. Similar to the kalicludines, APEKTx1 shares structural homology with both the basic pancreatic trypsin inhibitor (BPTI), a very potent Kunitz-type protease inhibitor, and dendrotoxins which are powerful blockers of voltage-gated potassium channels. In this study, APEKTx1 has been subjected to a screening on a wide range of 23 ion channels expressed in Xenopus laevis oocytes: 13 cloned voltage-gated potassium channels (K(V)1.1-K(V)1.6, K(V)1.1 triple mutant, K(V)2.1, K(V)3.1, K(V)4.2, K(V)4.3, hERG, the insect channel Shaker IR), 2 cloned hyperpolarization-activated cyclic nucleotide-sensitive cation non-selective channels (HCN1 and HCN2) and 8 cloned voltage-gated sodium channels (Na(V)1.2-Na(V)1.8 and the insect channel DmNa(V)1). Our data show that APEKTx1 selectively blocks K(V)1.1 channels in a very potent manner with an IC(50) value of 0.9nM. Furthermore, we compared the trypsin inhibitory activity of this toxin with BPTI. APEKTx1 inhibits trypsin with a dissociation constant of 124nM. In conclusion, this study demonstrates that APEKTx1 has the unique feature to combine the dual functionality of a potent and selective blocker of K(V)1.1 channels with that of a competitive inhibitor of trypsin.


Asunto(s)
Venenos de Cnidarios/farmacología , Péptidos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Inhibidores de Proteasas/farmacología , Anémonas de Mar/fisiología , Secuencia de Aminoácidos , Animales , Venenos de Cnidarios/química , Venenos de Cnidarios/aislamiento & purificación , Datos de Secuencia Molecular , Oocitos/efectos de los fármacos , Oocitos/fisiología , Péptidos/química , Péptidos/aislamiento & purificación , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/aislamiento & purificación , Inhibidores de Proteasas/química , Inhibidores de Proteasas/aislamiento & purificación , Alineación de Secuencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Xenopus
7.
Front Pharmacol ; 1: 133, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21833172

RESUMEN

Because of their prominent role in electro-excitability, voltage-gated sodium (Na(V)) channels have become the foremost important target of animal toxins. These toxins have developed the ability to discriminate between closely related Na(V) subtypes, making them powerful tools to study Na(V) channel function and structure. CgNa is a 47-amino acid residue type I toxin isolated from the venom of the Giant Caribbean Sea Anemone Condylactis gigantea. Previous studies showed that this toxin slows the fast inactivation of tetrodotoxin-sensitive Na(V) currents in rat dorsal root ganglion neurons. To illuminate the underlying Na(V) subtype-selectivity pattern, we have assayed the effects of CgNa on a broad range of mammalian isoforms (Na(V)1.2-Na(V)1.8) expressed in Xenopus oocytes. This study demonstrates that CgNa selectively slows the fast inactivation of rNa(V)1.3/ß(1), mNa(V)1.6/ß(1) and, to a lesser extent, hNa(V)1.5/ß(1), while the other mammalian isoforms remain unaffected. Importantly, CgNa was also examined on the insect sodium channel DmNa(V)1/tipE, revealing a clear phyla-selectivity in the efficacious actions of the toxin. CgNa strongly inhibits the inactivation of the insect Na(V) channel, resulting in a dramatic increase in peak current amplitude and complete removal of fast and steady-state inactivation. Together with the previously determined solution structure, the subtype-selective effects revealed in this study make of CgNa an interesting pharmacological probe to investigate the functional role of specific Na(V) channel subtypes. Moreover, further structural studies could provide important information on the molecular mechanism of Na(V) channel inactivation.

8.
J Biol Chem ; 284(36): 24568-82, 2009 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-19592486

RESUMEN

Magi 4, now renamed delta-hexatoxin-Mg1a, is a 43-residue neurotoxic peptide from the venom of the hexathelid Japanese funnel-web spider (Macrothele gigas) with homology to delta-hexatoxins from Australian funnel-web spiders. It binds with high affinity to receptor site 3 on insect voltage-gated sodium (Na(V)) channels but, unlike delta-hexatoxins, does not compete for the related site 3 in rat brain despite being previously shown to be lethal by intracranial injection. To elucidate differences in Na(V) channel selectivity, we have undertaken the first characterization of a peptide toxin on a broad range of mammalian and insect Na(V) channel subtypes showing that delta-hexatoxin-Mg1a selectively slows channel inactivation of mammalian Na(V)1.1, Na(V)1.3, and Na(V)1.6 but more importantly shows higher affinity for insect Na(V)1 (para) channels. Consequently, delta-hexatoxin-Mg1a induces tonic repetitive firing of nerve impulses in insect neurons accompanied by plateau potentials. In addition, we have chemically synthesized and folded delta-hexatoxin-Mg1a, ascertained the bonding pattern of the four disulfides, and determined its three-dimensional solution structure using NMR spectroscopy. Despite modest sequence homology, we show that key residues important for the activity of scorpion alpha-toxins and delta-hexatoxins are distributed in a topologically similar manner in delta-hexatoxin-Mg1a. However, subtle differences in the toxin surfaces are important for the novel selectivity of delta-hexatoxin-Mg1a for certain mammalian and insect Na(V) channel subtypes. As such, delta-hexatoxin-Mg1a provides us with a specific tool with which to study channel structure and function and determinants for phylum- and tissue-specific activity.


Asunto(s)
Proteínas de Insectos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Canales de Sodio/metabolismo , Venenos de Araña/química , Venenos de Araña/farmacología , Animales , Proteínas de Insectos/antagonistas & inhibidores , Canal de Sodio Activado por Voltaje NAV1.1 , Canal de Sodio Activado por Voltaje NAV1.3 , Canal de Sodio Activado por Voltaje NAV1.6 , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Resonancia Magnética Nuclear Biomolecular , Periplaneta/metabolismo , Estructura Terciaria de Proteína , Ratas , Xenopus laevis
9.
Curr Pharm Des ; 14(24): 2492-502, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18781997

RESUMEN

Throughout millions of years of evolution, nature has supplied various organisms with a massive arsenal of venoms to defend themselves against predators or to hunt prey. These venoms are rich cocktails of diverse bioactive compounds with divergent functions, extremely effective in immobilizing or killing the recipient. In fact, venom peptides from various animals have been shown to specifically act on ion channels and other cellular receptors, and impair their normal functioning. Because of their key role in the initiation and propagation of electrical signals in excitable tissue, it is not very surprising that several isoforms of voltage-activated sodium channels are specifically targeted by many of these venom peptides. Therefore, these peptide toxins provide tremendous opportunities to design drugs with a higher efficacy and fewer undesirable side effects. This review puts venom peptides from spiders, scorpions and cone snails that target voltage-activated sodium channels in the spotlight, and addresses their potential therapeutical applications.


Asunto(s)
Diseño de Fármacos , Péptidos/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/metabolismo , Ponzoñas/química , Animales , Humanos , Venenos de Moluscos/química , Péptidos/aislamiento & purificación , Péptidos/uso terapéutico , Venenos de Escorpión/química , Bloqueadores de los Canales de Sodio/aislamiento & purificación , Bloqueadores de los Canales de Sodio/uso terapéutico , Canales de Sodio/fisiología , Venenos de Araña/química
10.
J Biol Chem ; 282(7): 4643-4652, 2007 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-17148449

RESUMEN

Magi 5, from the hexathelid spider Macrothele gigas, is a 29-residue polypeptide containing three disulfide bridges. It binds specifically to receptor site 4 on mammalian voltage-gated sodium channels and competes with scorpion beta-toxins, such as Css IV from Centruroides suffusus suffusus. As a consequence, Magi 5 shifts the activation voltage of the mammalian rNav1.2a channel to more hyperpolarized voltages, whereas the insect channel, DmNav1, is not affected. To gain insight into toxin-channel interactions, Magi 5 and 23 analogues were synthesized. The three-dimensional structure of Magi 5 in aqueous solution was determined, and its voltage-gated sodium channel-binding surfaces were mapped onto this structure using data from electrophysiological measurements on a series of Ala-substituted analogues. The structure clearly resembles the inhibitor cystine knot structural motif, although the triple-stranded beta-sheet typically found in that motif is partially distorted in Magi 5. The interactive surface of Magi 5 toward voltage-gated sodium channels resembles in some respects the Janus-faced atracotoxins, with functionally important charged residues on one face of the toxin and hydrophobic residues on the other. Magi 5 also resembles the scorpion beta-toxin Css IV, which has distinct nonpolar and charged surfaces that are critical for channel binding and has a key Glu involved in voltage sensor trapping. These two distinct classes of toxin, with different amino acid sequences and different structures, may utilize similar groups of residues on their surface to achieve the common end of modifying voltage-gated sodium channel function.


Asunto(s)
Modelos Moleculares , Canales de Sodio/química , Venenos de Araña/química , Animales , Humanos , Potenciales de la Membrana/efectos de los fármacos , Mutación Missense , Estructura Terciaria de Proteína/genética , Venenos de Escorpión/química , Venenos de Escorpión/farmacología , Homología de Secuencia de Aminoácido , Canales de Sodio/genética , Canales de Sodio/metabolismo , Venenos de Araña/farmacología , Relación Estructura-Actividad , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA