Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 49(9): e49, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33524153

RESUMEN

Genome-wide localization of chromatin and transcription regulators can be detected by a variety of techniques. Here, we describe a novel method 'greenCUT&RUN' for genome-wide profiling of transcription regulators, which has a very high sensitivity, resolution, accuracy and reproducibility, whilst assuring specificity. Our strategy begins with tagging of the protein of interest with GFP and utilizes a GFP-specific nanobody fused to MNase to profile genome-wide binding events. By using a GFP-nanobody the greenCUT&RUN approach eliminates antibody dependency and variability. Robust genomic profiles were obtained with greenCUT&RUN, which are accurate and unbiased towards open chromatin. By integrating greenCUT&RUN with nanobody-based affinity purification mass spectrometry, 'piggy-back' DNA binding events can be identified on a genomic scale. The unique design of greenCUT&RUN grants target protein flexibility and yields high resolution footprints. In addition, greenCUT&RUN allows rapid profiling of mutants of chromatin and transcription proteins. In conclusion, greenCUT&RUN is a widely applicable and versatile genome-mapping technique.


Asunto(s)
Genómica/métodos , Proteómica/métodos , Factores de Transcripción/metabolismo , Sitios de Unión , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/inmunología , Células HeLa , Humanos , Espectrometría de Masas , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Recombinantes de Fusión/análisis , Anticuerpos de Dominio Único , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo
2.
Breast Cancer Res ; 24(1): 65, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192788

RESUMEN

BACKGROUND: Ribosomal biogenesis and ribosomal proteins have attracted attention in the context of tumor biology in recent years. Instead of being mere translational machineries, ribosomes might play an active role in tumor initiation and progression. Despite its importance, regulation of ribosomal biogenesis is still not completely understood. METHODS: Using Gene Set Enrichment Analysis of RNA sequencing and proteomical mass spectrometry data in breast cancer cells expressing Krüppel-like factor 7 (KLF7), we identified processes altered by this transcription factor. In silico analyses of a cohort of breast cancer patients in The Cancer Genome Atlas confirmed our finding. We further verified the role of KLF7 the identified ribosomal processes in in vitro assays of mammary carcinoma cell lines and analyses of breast cancer patients' tissue slices. RESULTS: We identified the transcription factor Krüppel-like factor 7 (KLF7) as a regulator of ribosomal biogenesis and translation in breast cancer cells and tissue. Highly significant overlapping processes related to ribosomal biogenesis were identified in proteomics and transcriptomics data and confirmed in patients' breast cancer RNA Seq data. Further, nucleoli, the sites of ribosomal biogenesis, were morphologically altered and quantitatively increased in KLF7-expressing cells. Pre-rRNA processing was identified as one potential process affected by KLF7. In addition, an increase in global translation independent from proliferation and transcription was observed upon exogenous KLF7 expression in vitro. Importantly, in a cohort of breast cancer patients, KLF7-expression levels correlated with aggressiveness of the intrinsic breast cancer subtype and tumor grading. Moreover, KLF7 correlated with nucleolar characteristics in human breast tumor tissue, indicating a role for KLF7 in ribosomal biogenesis. CONCLUSION: In mammary carcinoma, KLF7 is involved in ribosomal biogenesis. Alterations of ribosomal biogenesis has far reaching quantitative and qualitative implications for the proteome of the cancer cells. This might influence the aggressiveness of cancer cells.


Asunto(s)
Neoplasias de la Mama , Carcinoma , Neoplasias de la Mama/genética , Femenino , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteoma , Precursores del ARN , Proteínas Ribosómicas/genética , Factores de Transcripción
3.
Mol Cell ; 56(5): 630-40, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25454947

RESUMEN

Proteolysis by aspartyl intramembrane proteases such as presenilin and signal peptide peptidase (SPP) underlies many cellular processes in health and disease. Saccharomyces cerevisiae encodes a homolog that we named yeast presenilin fold 1 (Ypf1), which we verify to be an SPP-type protease that localizes to the endoplasmic reticulum (ER). Our work shows that Ypf1 functionally interacts with the ER-associated degradation (ERAD) factors Dfm1 and Doa10 to regulate the abundance of nutrient transporters by degradation. We demonstrate how this noncanonical branch of the ERAD pathway, which we termed "ERAD regulatory" (ERAD-R), responds to ligand-mediated sensing as a trigger. More generally, we show that Ypf1-mediated posttranslational regulation of plasma membrane transporters is indispensible for early sensing and adaptation to nutrient depletion. The combination of systematic analysis alongside mechanistic details uncovers a broad role of intramembrane proteolysis in regulating secretome dynamics.


Asunto(s)
Retículo Endoplásmico/metabolismo , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Membrana Celular/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Regulación Fúngica de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Filogenia , Saccharomyces cerevisiae/fisiología , Alineación de Secuencia , Ubiquitina-Proteína Ligasas/metabolismo , Zinc/metabolismo
4.
J Am Soc Nephrol ; 32(3): 563-579, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33514561

RESUMEN

BACKGROUND: Previous research demonstrated that small Rho GTPases, modulators of the actin cytoskeleton, are drivers of podocyte foot-process effacement in glomerular diseases, such as FSGS. However, a comprehensive understanding of the regulatory networks of small Rho GTPases in podocytes is lacking. METHODS: We conducted an analysis of podocyte transcriptome and proteome datasets for Rho GTPases; mapped in vivo, podocyte-specific Rho GTPase affinity networks; and examined conditional knockout mice and murine disease models targeting Srgap1. To evaluate podocyte foot-process morphology, we used super-resolution microscopy and electron microscopy; in situ proximity ligation assays were used to determine the subcellular localization of the small GTPase-activating protein SRGAP1. We performed functional analysis of CRISPR/Cas9-generated SRGAP1 knockout podocytes in two-dimensional and three-dimensional cultures and quantitative interaction proteomics. RESULTS: We demonstrated SRGAP1 localization to podocyte foot processes in vivo and to cellular protrusions in vitro. Srgap1fl/fl*Six2Cre but not Srgap1fl/fl*hNPHS2Cre knockout mice developed an FSGS-like phenotype at adulthood. Podocyte-specific deletion of Srgap1 by hNPHS2Cre resulted in increased susceptibility to doxorubicin-induced nephropathy. Detailed analysis demonstrated significant effacement of podocyte foot processes. Furthermore, SRGAP1-knockout podocytes showed excessive protrusion formation and disinhibition of the small Rho GTPase machinery in vitro. Evaluation of a SRGAP1-dependent interactome revealed the involvement of SRGAP1 with protrusive and contractile actin networks. Analysis of glomerular biopsy specimens translated these findings toward human disease by displaying a pronounced redistribution of SRGAP1 in FSGS. CONCLUSIONS: SRGAP1, a podocyte-specific RhoGAP, controls podocyte foot-process architecture by limiting the activity of protrusive, branched actin networks. Therefore, elucidating the complex regulatory small Rho GTPase affinity network points to novel targets for potentially precise intervention in glomerular diseases.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Podocitos/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Actomiosina/metabolismo , Animales , Extensiones de la Superficie Celular/metabolismo , Extensiones de la Superficie Celular/ultraestructura , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Proteínas Activadoras de GTPasa/deficiencia , Proteínas Activadoras de GTPasa/genética , Glomeruloesclerosis Focal y Segmentaria/etiología , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos , Integrinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Síndrome Nefrótico/etiología , Síndrome Nefrótico/metabolismo , Síndrome Nefrótico/patología , Podocitos/ultraestructura , Mapeo de Interacción de Proteínas , Proteoma , Seudópodos/metabolismo , Seudópodos/ultraestructura , Transcriptoma
5.
Mol Cell Proteomics ; 18(1): 65-85, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30257879

RESUMEN

Fibroblast activation protein-alpha (FAP) is a cell-surface transmembrane-anchored dimeric protease. This unique, constitutively active serine protease has both dipeptidyl aminopeptidase and endopeptidase activities and can hydrolyze the post-proline bond. FAP expression is very low in adult organs but is upregulated by activated fibroblasts in sites of tissue remodeling, including fibrosis, atherosclerosis, arthritis and tumors. To identify the endogenous substrates of FAP, we immortalized primary mouse embryonic fibroblasts (MEFs) from FAP gene knockout embryos and then stably transduced them to express either enzymatically active or inactive FAP. The MEF secretomes were then analyzed using degradomic and proteomic techniques. Terminal amine isotopic labeling of substrates (TAILS)-based degradomics identified cleavage sites in collagens, many other extracellular matrix (ECM) and associated proteins, and lysyl oxidase-like-1, CXCL-5, CSF-1, and C1qT6, that were confirmed in vitro In addition, differential metabolic labeling coupled with quantitative proteomic analysis also implicated FAP in ECM-cell interactions, as well as with coagulation, metabolism and wound healing associated proteins. Plasma from FAP-deficient mice exhibited slower than wild-type clotting times. This study provides a significant expansion of the substrate repertoire of FAP and provides insight into the physiological and potential pathological roles of this enigmatic protease.


Asunto(s)
Fibroblastos/citología , Gelatinasas/genética , Gelatinasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteómica/métodos , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Adipoquinas/sangre , Adipoquinas/química , Aminoácido Oxidorreductasas/sangre , Aminoácido Oxidorreductasas/química , Animales , Técnicas de Cultivo de Célula , Línea Celular , Quimiocina CXCL5/sangre , Quimiocina CXCL5/química , Endopeptidasas , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Humanos , Factor Estimulante de Colonias de Macrófagos/sangre , Factor Estimulante de Colonias de Macrófagos/química , Ratones , Mapas de Interacción de Proteínas , Proteolisis , Especificidad por Sustrato
6.
Int J Mol Sci ; 22(4)2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33562184

RESUMEN

The deepest evolutionary branches of the trypsin/chymotrypsin family of serine proteases are represented by the digestive enzymes of the gastrointestinal tract and the multi-domain proteases of the blood coagulation and complement system. Similar to the very old digestive system, highly diverse cleavage specificities emerged in various cell lineages of the immune defense system during vertebrate evolution. The four neutrophil serine proteases (NSPs) expressed in the myelomonocyte lineage, neutrophil elastase, proteinase 3, cathepsin G, and neutrophil serine protease 4, collectively display a broad repertoire of (S1) specificities. The origin of NSPs can be traced back to a circulating liver-derived trypsin-like protease, the complement factor D ancestor, whose activity is tightly controlled by substrate-induced activation and TNFα-induced locally upregulated protein secretion. However, the present-day descendants are produced and converted to mature enzymes in precursor cells of the bone marrow and are safely sequestered in granules of circulating neutrophils. The potential site and duration of action of these cell-associated serine proteases are tightly controlled by the recruitment and activation of neutrophils, by stimulus-dependent regulated secretion of the granules, and by various soluble inhibitors in plasma, interstitial fluids, and in the inflammatory exudate. An extraordinary dynamic range and acceleration of immediate defense responses have been achieved by exploiting the high structural plasticity of the trypsin fold.


Asunto(s)
Linaje de la Célula , Monocitos/enzimología , Células Mieloides/enzimología , Serina Proteasas/metabolismo , Animales , Catepsina G/metabolismo , Humanos , Elastasa de Leucocito/metabolismo , Monocitos/citología , Mieloblastina/metabolismo , Células Mieloides/citología
7.
Cell Microbiol ; 21(4): e12993, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30551267

RESUMEN

The obligate intracellular bacterium Chlamydia trachomatis replicates in a cytosolic vacuole in human epithelial cells. Infection of human cells with C. trachomatis causes substantial changes to many host cell-signalling pathways, but the molecular basis of such influence is not well understood. Studies of gene transcription of the infected cell have shown altered transcription of many host cell genes, indicating a transcriptional response of the host cell to the infection. We here describe that infection of HeLa cells with C. trachomatis as well as infection of murine cells with Chlamydia muridarum substantially inhibits protein synthesis of the infected host cell. This inhibition was accompanied by changes to the ribosomal profile of the infected cell indicative of a block of translation initiation, most likely as part of a stress response. The Chlamydia protease-like activity factor (CPAF) also reduced protein synthesis in uninfected cells, although CPAF-deficient C. trachomatis showed no defect in this respect. Analysis of polysomal mRNA as a proxy of actively transcribed mRNA identified a number of biological processes differentially affected by chlamydial infection. Mapping of differentially regulated genes onto a protein interaction network identified nodes of up- and down-regulated networks during chlamydial infection. Proteomic analysis of protein synthesis further suggested translational regulation of host cell functions by chlamydial infection. These results demonstrate reprogramming of the host cell during chlamydial infection through the alteration of protein synthesis.


Asunto(s)
Chlamydia trachomatis/patogenicidad , Animales , Endopeptidasas/metabolismo , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Ratones , Biosíntesis de Proteínas/fisiología , Proteómica/métodos , ARN Mensajero/metabolismo , Transducción de Señal/fisiología
8.
RNA Biol ; 17(1): 62-74, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31559909

RESUMEN

Neuronal microexons represent the most highly conserved class of alternative splicing events and their timed expression shapes neuronal biology, including neuronal commitment and differentiation. The six-nt microexon 34' is included in the neuronal form of TAF1 mRNA, which encodes the largest subunit of the basal transcription factor TFIID. In this study, we investigate the tissue distribution of TAF1-34' mRNA and protein and the mechanism responsible for its neuronal-specific splicing. Using isoform-specific RNA probes and antibodies, we observe that canonical TAF1 and TAF1-34' have different distributions in the brain, which distinguish proliferating from post-mitotic neurons. Knockdown and ectopic expression experiments demonstrate that the neuronal-specific splicing factor SRRM4/nSR100 promotes the inclusion of microexon 34' into TAF1 mRNA, through the recognition of UGC sequences in the poly-pyrimidine tract upstream of the regulated microexon. These results show that SRRM4 regulates temporal and spatial expression of alternative TAF1 mRNAs to generate a neuronal-specific TFIID complex.


Asunto(s)
Exones , Regulación de la Expresión Génica , Histona Acetiltransferasas/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Empalme del ARN , ARN Mensajero/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/genética , Animales , Encéfalo/metabolismo , Diferenciación Celular , Inmunohistoquímica , Ratones , Neurogénesis/genética , Neuronas/citología
9.
Artif Organs ; 44(3): 257-267, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31494943

RESUMEN

The changes in the myocardial proteome and metabolome associated with left ventricular assist device (LVAD) therapy in patients with ischemic cardiomyopathy (ICM) are poorly characterized. We investigated the impact of mechanical unloading following LVAD therapy on the myocardial proteome and metabolome. Matched samples of 5 patients' myocardial tissue, harvested at the time of LVAD implant ("pre-LVAD") or heart transplant ("post-LVAD"), were studied by quantitative proteomics and metabolomics as well as being probed for T-tubule structure and connexin-43 distribution. Moreover, pre-LVAD proteome profiles of ICM context were bioinformatically compared to pre-LVAD proteome profiles of dilated cardiac myopathy (DCM). More than 2120 proteins were reliably identified and quantified in paired patient samples. LVAD therapy led to proteomic remodeling, including reduced levels of α-1-antichymotrypsin together with an overall decrease of immune response proteins and an increase of proteins involved in membrane biology. Metabolomics highlighted increased glucose and glucose-6-phosphate levels in the left ventricle upon LVAD therapy. Wheat germ agglutinin staining demonstrated improved T-tubule structure. Connexin-43 displayed a trend for more pronounced intercalated disc localization. In comparing pre-LVAD proteome profiles of ICM context with pre-LVAD proteome profiles of dilated cardiac myopathy (DCM), we noticed an overrepresentation in ICM of proteins associated with humoral immune response. Our findings underline an impact of LVAD therapy on left ventricular biology in ICM. The proteomic, metabolomic, and structural alterations described here are typically associated with cardiac recovery. On the molecular level, our findings indicate the possibility of cardiac remodeling under LVAD therapy in ICM.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Corazón Auxiliar , Metaboloma , Isquemia Miocárdica/terapia , Proteoma/metabolismo , Anciano , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Conexina 43/análisis , Conexina 43/metabolismo , Femenino , Glucosa/análisis , Glucosa/metabolismo , Ventrículos Cardíacos/patología , Humanos , Masculino , Persona de Mediana Edad , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Proteoma/análisis
10.
Biol Chem ; 399(9): 997-1007, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-29883318

RESUMEN

In humans, three different trypsin-isoenzymes have been described. Of these, trypsin-3 appears to be functionally different from the others. In order to systematically study the specificity of the trypsin-isoenzymes, we utilized proteome-derived peptide libraries and quantitative proteomics. We found similar specificity profiles dominated by the well-characterized preference for cleavage after lysine and arginine. Especially, trypsin-1 slightly favored lysine over arginine in this position, while trypsin-3 did not discriminate between them. In the P1' position, which is the residue C-terminal to the cleavage site, we noticed a subtle enrichment of alanine and glycine for all three trypsins and for trypsin-3 there were additional minor P1' and P2' preferences for threonine and aspartic acid, respectively. These findings were confirmed by FRET peptide substrates showing different susceptibility to cleavage by different trypsins. The preference of trypsin-3 for aspartic acid in P2' is explained by salt bridge formation with the unique Arg193. This salt bridge enables and stabilizes a canonical oxyanion conformation by the amides of Ser195 and Arg193, thus manifesting a selective substrate-assisted catalysis. As trypsin-3 has been proposed to be a therapeutic target and marker for cancers, our results may aid the development of specific inhibitors for cancer therapy and diagnostic probes.


Asunto(s)
Tripsina/química , Tripsina/metabolismo , Secuencia de Aminoácidos , Colorantes Fluorescentes/química , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Modelos Moleculares , Alineación de Secuencia , Especificidad por Sustrato
11.
Biol Chem ; 399(10): 1223-1235, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-29924726

RESUMEN

The genome of the model plant Arabidopsis thaliana encodes three paralogues of the papain-like cysteine proteinase cathepsin B (AtCathB1, AtCathB2 and AtCathB3), whose individual functions are still largely unknown. Here we show that a mutated splice site causes severe truncations of the AtCathB1 polypeptide, rendering it catalytically incompetent. By contrast, AtCathB2 and AtCathB3 are effective proteases which display comparable hydrolytic properties and share most of their substrate specificities. Site-directed mutagenesis experiments demonstrated that a single amino acid substitution (Gly336→Glu) is sufficient to confer AtCathB2 with the capacity to tolerate arginine in its specificity-determining S2 subsite, which is otherwise a hallmark of AtCathB3-mediated cleavages. A degradomics approach utilizing proteome-derived peptide libraries revealed that both enzymes are capable of acting as endopeptidases and exopeptidases, releasing dipeptides from the C-termini of substrates. Mutation of the carboxydipeptidase determinant His207 also affected the activity of AtCathB2 towards non-exopeptidase substrates, highlighting mechanistic differences between plant and human cathepsin B. This was also noted in molecular modeling studies which indicate that the occluding loop defining the dual enzymatic character of cathepsin B does not obstruct the active-site cleft of AtCathB2 to the same extent as in its mammalian orthologues.


Asunto(s)
Arabidopsis/enzimología , Carboxipeptidasas/metabolismo , Catepsina B/metabolismo , Endopeptidasas/metabolismo , Animales , Carboxipeptidasas/química , Carboxipeptidasas/genética , Catepsina B/química , Catepsina B/genética , Clonación Molecular , Endopeptidasas/química , Endopeptidasas/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Hojas de la Planta/enzimología , Reacción en Cadena en Tiempo Real de la Polimerasa , Spodoptera/citología , Spodoptera/genética
12.
Clin Proteomics ; 15: 25, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30087584

RESUMEN

BACKGROUND: Renal oncocytomas (ROs) are benign epithelial tumors of the kidney whereas chromophobe renal cell carcinoma (chRCCs) are malignant renal tumors. The latter constitute 5-7% of renal neoplasias. ROs and chRCCs show pronounced molecular and histological similarities, which renders their differentiation demanding. We aimed for the differential proteome profiling of ROs and early-stage chRCCs in order to better understand distinguishing protein patterns. METHODS: We employed formalin-fixed, paraffin-embedded samples (six RO cases, six chRCC cases) together with isotopic triplex dimethylation and a pooled reference standard to enable cohort-wide quantitative comparison. For lysosomal-associated membrane protein 1 (LAMP1) and integrin alpha-V (ITGAV) we performed corroborative immunohistochemistry (IHC) in an extended cohort of 42 RO cases and 31 chRCC cases. RESULTS: At 1% false discovery rate, we identified > 3900 proteins, of which > 2400 proteins were consistently quantified in at least four RO and four chRCC cases. The proteomic expression profiling discriminated ROs and chRCCs and highlighted established features such as accumulation of mitochondrial proteins in ROs together with emphasizing the accumulation of endo-lysosomal proteins in chRCCs. In line with the proteomic data, IHC showed enrichment of LAMP1 in chRCC and of ITGAV in RO. CONCLUSION: We present one of the first differential proteome profiling studies on ROs and chRCCs and highlight differential abundance of LAMP1 and ITGAV in these renal tumors.

13.
Mol Cell Proteomics ; 15(7): 2515-24, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27122596

RESUMEN

We present protease specificity profiling based on quantitative proteomics in combination with proteome-derived peptide libraries. Peptide libraries are generated by endoproteolytic digestion of proteomes without chemical modification of primary amines before exposure to a protease under investigation. After incubation with a test protease, treated and control libraries are differentially isotope-labeled using cost-effective reductive dimethylation. Upon analysis by liquid chromatography-tandem mass spectrometry, cleavage products of the test protease appear as semi-specific peptides that are enriched for the corresponding isotope label. We validate our workflow with two proteases with well-characterized specificity profiles: trypsin and caspase-3. We provide the first specificity profile of a protease encoded by a human endogenous retrovirus and for chlamydial protease-like activity factor (CPAF). For CPAF, we also highlight the structural basis of negative subsite cooperativity between subsites S1 and S2'. For A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) -4, -5, and -15, we show a canonical preference profile, including glutamate in P1 and glycine in P3'. In total, we report nearly 4000 cleavage sites for seven proteases. Our protocol is fast, avoids enrichment or synthesis steps, and enables probing for lysine selectivity as well as subsite cooperativity. Due to its simplicity, we anticipate usability by most proteomic laboratories.


Asunto(s)
Péptido Hidrolasas/metabolismo , Proteoma/análisis , Proteómica/métodos , Cromatografía Liquida , Humanos , Marcaje Isotópico , Biblioteca de Péptidos , Especificidad por Sustrato , Espectrometría de Masas en Tándem
14.
J Biol Chem ; 291(2): 593-604, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26582203

RESUMEN

Human kallikrein-related peptidase 2 (KLK2) is a key serine protease in semen liquefaction and prostate cancer together with KLK3/prostate-specific antigen. In order to decipher the function of its potential N-glycosylation site, we produced pro-KLK2 in Leishmania tarentolae cells and compared it with its non-glycosylated counterpart from Escherichia coli expression. Mass spectrometry revealed that Asn-95 carries a core glycan, consisting of two GlcNAc and three hexoses. Autocatalytic activation was retarded in glyco-pro-KLK2, whereas the activated glyco-form exhibited an increased proteolytic resistance. The specificity patterns obtained by the PICS (proteomic identification of protease cleavage sites) method are similar for both KLK2 variants, with a major preference for P1-Arg. However, glycosylation changes the enzymatic activity of KLK2 in a drastically substrate-dependent manner. Although glyco-KLK2 has a considerably lower catalytic efficiency than glycan-free KLK2 toward peptidic substrates with P2-Phe, the situation was reverted toward protein substrates, such as glyco-pro-KLK2 itself. These findings can be rationalized by the glycan-carrying 99-loop that prefers to cover the active site like a lid. By contrast, the non-glycosylated 99-loop seems to favor a wide open conformation, which mostly increases the apparent affinity for the substrates (i.e. by a reduction of Km). Also, the cleavage pattern and kinetics in autolytic inactivation of both KLK2 variants can be explained by a shift of the target sites due to the presence of the glycan. These striking effects of glycosylation pave the way to a deeper understanding of kallikrein-related peptidase biology and pathology.


Asunto(s)
Polisacáridos/metabolismo , Calicreínas de Tejido/química , Calicreínas de Tejido/metabolismo , Secuencia de Aminoácidos , Autólisis , Activación Enzimática , Fibronectinas/metabolismo , Glicosilación , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Proteolisis , Proteínas Recombinantes/aislamiento & purificación , Relación Estructura-Actividad , Especificidad por Sustrato , Factores de Tiempo
15.
Biochim Biophys Acta Proteins Proteom ; 1865(4): 444-452, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28188928

RESUMEN

The tobacco-related plant Nicotiana benthamiana is gaining interest as a versatile host for the production of monoclonal antibodies and other protein therapeutics. However, the susceptibility of plant-derived recombinant proteins to endogenous proteolytic enzymes limits their use as biopharmaceuticals. We have now identified two previously uncharacterized N. benthamiana proteases with high antibody-degrading activity, the papain-like cysteine proteinases NbCysP6 and NbCysP7. Both enzymes are capable of hydrolysing a wide range of synthetic substrates, although only NbCysP6 tolerates basic amino acids in its specificity-determining S2 subsite. The overlapping substrate specificities of NbCysP6 and NbCysP7 are also documented by the closely related properties of their other subsites as deduced from the action of the enzymes on proteome-derived peptide libraries. Notable differences were observed to the substrate preferences of N. benthamiana cathepsin B, another antibody-degrading papain-like cysteine proteinase. The complementary activities of NbCysP6, NbCysP7 and N. benthamiana cathepsin B indicate synergistic roles of these proteases in the turnover of recombinant and endogenous proteins in planta, thus representing a paradigm for the shaping of plant proteomes by the combined action of papain-like cysteine proteinases.


Asunto(s)
Catepsina B/metabolismo , Nicotiana/enzimología , Proteínas de Plantas/metabolismo , Catepsina B/genética , Activación Enzimática , Proteínas de Plantas/genética , Nicotiana/genética
16.
J Proteome Res ; 15(8): 2812-25, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27378031

RESUMEN

Pupylation is a bacterial ubiquitin-like protein modification pathway, which results in the attachment of the small protein Pup to specific lysine residues of cellular targets. Pup was shown to serve as a degradation signal, directing proteins toward the bacterial proteasome for turnover. Recently, it was hypothesized that pupylation and proteasomal protein degradation support the survival of Mycobacterium smegmatis (Msm) during nitrogen starvation by supplying recycled amino acids. In the present study we generated a Pup deletion strain to investigate the influence of pupylation on Msm proteome in the absence of nitrogen sources. Quantitative proteomic analyses revealed a relatively low impact of Pup on MsmΔpup proteome immediately after exposure to growth medium lacking nitrogen. Less than 5.4% of the proteins displayed altered cellular levels when compared to Msm wild type. In contrast, post 24 h of nitrogen starvation 501 proteins (41% of the total quantified proteome) of Msm pup deletion strain showed significant changes in abundance. Noteworthy, important players involved in nitrogen assimilation were significantly affected in MsmΔpup. Furthermore, we quantified pupylated proteins of nitrogen-starved Msm to gain more detailed insights in the role of pupylation in surviving and overcoming the lack of nitrogen.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mycobacterium smegmatis/metabolismo , Nitrógeno/deficiencia , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteómica , Ubiquitinas/metabolismo , Aminoácidos/metabolismo , Proteolisis , Proteoma/metabolismo
17.
J Proteome Res ; 15(5): 1402-17, 2016 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-27089454

RESUMEN

Keratinocyte-specific deletion of ADAM17 in mice impairs terminal differentiation of keratinocytes leading to severe epidermal barrier defects. Mice deficient for ADAM17 in keratinocytes phenocopy mice with a keratinocyte-specific deletion of epidermal growth factor receptor (EGFR), which highlights the role of ADAM17 as a "ligand sheddase" of EGFR ligands. In this study, we aim for the first proteomic/degradomic approach to characterize the disruption of the ADAM17-EGFR signaling axis and its consequences for epidermal barrier formation. Proteomic profiling of the epidermal proteome of mice deficient for either ADAM17 or EGFR in keratinocytes at postnatal days 3 and 10 revealed highly similar protein alterations for ADAM17 and EGFR deficiency. These include massive proteome alterations of structural and regulatory components important for barrier formation such as transglutaminases, involucrin, filaggrin, and filaggrin-2. Cleavage site analysis using terminal amine isotopic labeling of substrates revealed increased proteolytic processing of S100 fused-type proteins including filaggrin-2. Alterations in proteolytic processing are supported by altered abundance of numerous proteases upon keratinocyte-specific Adam17 or Egfr deletion, among them kallikreins, cathepsins, and their inhibitors. This study highlights the essential role of proteolytic processing for maintenance of a functional epidermal barrier. Furthermore, it suggests that most defects in formation of the postnatal epidermal barrier upon keratinocyte-specific ADAM17 deletion are mediated via EGFR.


Asunto(s)
Proteína ADAM17/deficiencia , Receptores ErbB/deficiencia , Queratinocitos , Proteoma/metabolismo , Proteína ADAM17/genética , Animales , Epidermis/patología , Receptores ErbB/genética , Eliminación de Gen , Ratones , Proteolisis , Proteoma/análisis
18.
Biochim Biophys Acta ; 1853(10 Pt A): 2515-25, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26209915

RESUMEN

Fibroblast activation protein alpha (FAPα) is a cell surface protease expressed by cancer-associated fibroblasts in the microenvironment of most solid tumors. As there is increasing evidence for proteases having non-catalytic functions, we determined the FAPα interactome in cancer-associated fibroblasts using the quantitative immunoprecipitation combined with knockdown (QUICK) method. Complex formation with adenosin deaminase, erlin-2, stomatin, prohibitin, Thy-1 membrane glycoprotein, and caveolin-1 was further validated by immunoblotting. Co-immunoprecipitation (co-IP) of the known stoichiometric FAPα binding partner dipeptidyl-peptidase IV (DPPIV) corroborated the proteomic strategy. Reverse co-IPs validated the FAPα interaction with caveolin-1, erlin-2, and stomatin while co-IP upon RNA-interference mediated knock-down of DPPIV excluded adenosin deaminase as a direct FAPα interaction partner. Many newly identified FAPα interaction partners localize to lipid rafts, including caveolin-1, a widely-used marker for lipid raft localization. We hypothesized that this indicates a recruitment of FAPα to lipid raft structures. In density gradient centrifugation, FAPα co-fractionates with caveolin-1. Immunofluorescence optical sectioning microscopy of FAPα and lipid raft markers further corroborates recruitment of FAPα to lipid rafts and invadopodia. FAPα is therefore an integral component of stromal lipid rafts in solid tumors. In essence, we provide one of the first interactome analyses of a cell surface protease and translate these results into novel biological aspects of a marker protein for cancer-associated fibroblasts.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias del Colon/metabolismo , Fibroblastos/metabolismo , Gelatinasas/metabolismo , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Seudópodos/metabolismo , Serina Endopeptidasas/metabolismo , Línea Celular , Neoplasias del Colon/patología , Endopeptidasas , Fibroblastos/patología , Humanos , Microdominios de Membrana/patología , Complejos Multiproteicos/metabolismo , Transporte de Proteínas , Seudópodos/patología
19.
Arch Biochem Biophys ; 603: 110-7, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27246477

RESUMEN

The cysteine protease CP14 has been identified as a central component of a molecular module regulating programmed cell death in plant embryos. CP14 belongs to a distinct subfamily of papain-like cysteine proteinases of which no representative has been characterized thoroughly to date. However, it has been proposed that CP14 is a cathepsin H-like protease. We have now produced recombinant Nicotiana benthamiana CP14 (NbCP14) lacking the C-terminal granulin domain. As typical for papain-like cysteine proteinases, NbCP14 undergoes rapid autocatalytic activation when incubated at low pH. The mature protease is capable of hydrolysing several synthetic endopeptidase substrates, but cathepsin H-like aminopeptidase activity could not be detected. NbCP14 displays a strong preference for aliphatic over aromatic amino acids in the specificity-determining P2 position. This subsite selectivity was also observed upon digestion of proteome-derived peptide libraries. Notably, the specificity profile of NbCP14 differs from that of aleurain-like protease, the N. benthamiana orthologue of cathepsin H. We conclude that CP14 is a papain-like cysteine proteinase with unusual enzymatic properties which may prove of central importance for the execution of programmed cell death during plant development.


Asunto(s)
Proteasas de Cisteína/química , Proteínas de Plantas/química , Animales , Anticuerpos Monoclonales/química , Sitios de Unión , Catálisis , Catepsina H/química , Catepsinas/química , Hidrólisis , Insectos , Espectrometría de Masas , Papaína/química , Péptidos/química , Unión Proteica , Proteómica , Proteínas Recombinantes/química , Especificidad por Sustrato , Nicotiana
20.
BMC Cancer ; 16: 195, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26951071

RESUMEN

BACKGROUND: Ampullary cancer is a relatively rare form of cancer and usually treated by pancreatoduodenectomy, followed by adjuvant therapy. The intestinal subtype is associated with markedly improved prognosis after resection. At present, only few cell lines are available for in vitro studies of ampullary cancer and they have not been collectively characterized. METHODS: We characterize five ampullary cancer cell lines by subtype maker expression, epithelial-mesenchymal transition (EMT) features, growth and invasion, drug sensitivity and response to cancer-associated fibroblast conditioned medium (CAF-CM). RESULTS: On the basis of EMT features, subtype marker expression, growth, invasion and drug sensitivity three types of cell lines could be distinguished: mesenchymal-like, pancreatobiliary-like and intestinal-like. Heterogeneous effects from the cell lines in response to CAF-CM, such as different growth rates, induction of EMT markers as well as suppression of intestinal differentiation markers were observed. In addition, proteomic analysis showed a clear difference in intestinal-like cell line from other cell lines. CONCLUSION: Most of the available AMPAC cell lines seem to reflect a poorly differentiated pancreatobiliary or mesenchymal-like phenotype, which is consistent to their origin. We suggest that the most appropriate cell line model for intestinal-like AMPAC is the SNU869, while others seem to reflect aggressive AMPAC subtypes.


Asunto(s)
Ampolla Hepatopancreática/metabolismo , Ampolla Hepatopancreática/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Neoplasias/metabolismo , Neoplasias/patología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Metástasis de la Neoplasia , Estadificación de Neoplasias , Neoplasias/mortalidad , Neoplasias/terapia , Pronóstico , Proteoma , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA