RESUMEN
Metrics to quantify regulation of plant water status at the daily as opposed to the seasonal scale do not presently exist. This gap is significant since plants are hypothesised to regulate their water potential not only with respect to slowly changing soil drought but also with respect to faster changes in air vapour pressure deficit (VPD), a variable whose importance for plant physiology is expected to grow because of higher temperatures in the coming decades. We present a metric, the stringency of water potential regulation, that can be employed at the daily scale and quantifies the effects exerted on plants by the separate and combined effect of soil and atmospheric drought. We test our theory using datasets from two experiments where air temperature and VPD were experimentally manipulated. In contrast to existing metrics based on soil drought that can only be applied at the seasonal scale, our metric successfully detects the impact of atmospheric warming on the regulation of plant water status. We show that the thermodynamic effect of VPD on plant water status can be isolated and compared against that exerted by soil drought and the covariation between VPD and soil drought. Furthermore, in three of three cases, VPD accounted for more than 5 MPa of potential effect on leaf water potential. We explore the significance of our findings in the context of potential future applications of this metric from plant to ecosystem scale.
Asunto(s)
Sequías , Ecosistema , Plantas , Agua , SueloRESUMEN
Atmospheric conditions are expected to become warmer and drier in the future, but little is known about how evaporative demand influences forest structure and function independently from soil moisture availability, and how fast-response variables (such as canopy water potential and stomatal conductance) may mediate longer-term changes in forest structure and function in response to climate change. We used two tropical rainforest sites with different temperatures and vapour pressure deficits (VPD), but nonlimiting soil water supply, to assess the impact of evaporative demand on ecophysiological function and forest structure. Common species between sites allowed us to test the extent to which species composition, relative abundance and intraspecific variability contributed to site-level differences. The highest VPD site had lower midday canopy water potentials, canopy conductance (gc ), annual transpiration, forest stature, and biomass, while the transpiration rate was less sensitive to changes in VPD; it also had different height-diameter allometry (accounting for 51% of the difference in biomass between sites) and higher plot-level wood density. Our findings suggest that increases in VPD, even in the absence of soil water limitation, influence fast-response variables, such as canopy water potentials and gc , potentially leading to longer-term changes in forest stature resulting in reductions in biomass.
Asunto(s)
Hojas de la Planta , Suelo , Suelo/química , Hojas de la Planta/fisiología , Bosque Lluvioso , Presión de Vapor , Agua/fisiología , Abastecimiento de Agua , Transpiración de Plantas/fisiología , Árboles/fisiologíaRESUMEN
Soil-leaf hydraulic conductance determines canopy-atmosphere coupling in vegetation models, but it is typically derived from ex-situ measurements of stem segments and soil samples. Using a novel approach, we derive robust in-situ estimates for whole-tree conductance (ktree ), 'functional' soil conductance (ksoil ), and 'system' conductance (ksystem , water table to canopy), at two climatically different tropical rainforest sites. Hydraulic 'functional rooting depth', determined for each tree using profiles of soil water potential (Ψsoil ) and sap flux data, enabled a robust determination of ktree and ksoil . ktree was compared across species, size classes, seasons, height above nearest drainage (HAND), two field sites, and to alternative representations of ktree ; ksoil was analysed with respect to variations in site, season and HAND. ktree was lower and changed seasonally at the site with higher vapour pressure deficit (VPD) and rainfall; ktree differed little across species but scaled with tree circumference; rsoil (1/ksoil ) ranged from 0 in the wet season to 10× less than rtree (1/ktree ) in the dry season. VPD and not rainfall may influence plot-level k; leaf water potentials and sap flux can be used to determine ktree , ksoil and ksystem ; Ψsoil profiles can provide mechanistic insights into ecosystem-level water fluxes.
Asunto(s)
Suelo , Árboles , Ecosistema , Bosques , Hojas de la Planta , Transpiración de Plantas , Bosque Lluvioso , AguaRESUMEN
Turgor pressure is an essential, but difficult to measure indicator of plant water status. Turgor has been quantified by localized compression of cells or tissues, but a simple method to perform these measurements is lacking. We hypothesized that changes in leaf turgidity can be monitored by uniaxially compressing the leaf lamina and measuring the mechanical stress under a constrained thickness (stress relaxation) and that changes in leaf water content can be monitored by measuring the leaf thickness under constant mechanical stress. Using a simple, custom-built leaf squeeze-flow rheometer, we performed different compression tests on leaves from 13 plant species. The mechanical stress measured during stress relaxation was correlated with leaf bulk turgor pressure (R2 > 0.95) and thus with balancing pressure (R2 > 0.94); the leaf thickness measured under constant mechanical stress was correlated with relative water content (R2 > 0.74). The coefficients of these relationships were related to the leaf bulk osmotic pressure at the turgor-loss point. An idealized average-cell model suggests that, under isothermal conditions, the stationary bulk modulus during compression is largely determined by the bulk osmotic pressure. Our study presents an inexpensive, accessible and automatable method to monitor plant water status noninvasively.
Asunto(s)
Sequías , Agua , Presión Osmótica , Hojas de la Planta , PresiónRESUMEN
Understanding how plants acclimate to drought is crucial for predicting future vulnerability, yet seasonal acclimation of traits that improve drought tolerance in trees remains poorly resolved. We hypothesized that dry season acclimation of leaf and stem traits influencing shoot water storage and hydraulic capacitance would mitigate the drought-associated risks of reduced gas exchange and hydraulic failure in the mangrove Sonneratia alba. By late dry season, availability of stored water had shifted within leaves and between leaves and stems. While whole shoot capacitance remained stable, the symplastic fraction of leaf water increased 86%, leaf capacitance increased 104% and stem capacitance declined 80%. Despite declining plant water potentials, leaf and whole plant hydraulic conductance remained unchanged, and midday assimilation rates increased. Further, the available leaf water between the minimum water potential observed and that corresponding to 50% loss of stem conductance increased 111%. Shifting availability of pools of water, within and between organs, maintained leaf water available to buffer periods of increased photosynthesis and losses in stem hydraulic conductivity, mitigating risks of carbon depletion and hydraulic failure during atmospheric drought. Seasonal changes in access to tissue and organ water may have an important role in drought acclimation and avoidance.
Asunto(s)
Lythraceae/metabolismo , Brotes de la Planta/metabolismo , Tallos de la Planta/metabolismo , Transpiración de Plantas , Agua/metabolismo , Sequías , Hojas de la Planta/metabolismo , Estaciones del AñoRESUMEN
Foliar water uptake (FWU) occurs in plants of diverse ecosystems; however, the diversity of pathways and their associated FWU kinetics remain poorly resolved. We characterized a novel FWU pathway in two mangrove species of the Sonneratia genus, S. alba and S. caseolaris. Further, we assessed the influence of leaf wetting duration, wet-dry seasonality and leaf dehydration on leaf conductance to surface water (Ksurf ). The symplastic tracer dye, disodium fluorescein, revealed living cells subtending and encircling leaf epidermal structures known as cork warts as a pathway of FWU entry into the leaf. Rehydration kinetics experiments revealed a novel mode of FWU, with slow and steady rates of water uptake persistent over a duration of 12 hr. Ksurf increased with longer durations of leaf wetting and was greater in leaves with more negative water potentials at the initiation of leaf wetting. Ksurf declined by 68% between wet and dry seasons. Our results suggest that FWU via cork warts in Sonneratia sp. may be rate limited and under active regulation. We conclude that FWU pathways in halophytes may require ion exclusion to avoid uptake of salt when inundated, paralleling the capacity of halophyte roots for ion selectivity during water acquisition.
Asunto(s)
Lythraceae/metabolismo , Hojas de la Planta/metabolismo , Agua/metabolismo , Deshidratación , Cinética , Lythraceae/anatomía & histología , Hojas de la Planta/anatomía & histología , Transpiración de Plantas , Estaciones del Año , HumedalesRESUMEN
Droughts in a warming climate have become more common and more extreme, making understanding forest responses to water stress increasingly pressing. Analysis of water stress in trees has long focused on water potential in xylem and leaves, which influences stomatal closure and water flow through the soil-plant-atmosphere continuum. At the same time, changes of vegetation water content (VWC) are linked to a range of tree responses, including fluxes of water and carbon, mortality, flammability, and more. Unlike water potential, which requires demanding in situ measurements, VWC can be retrieved from remote sensing measurements, particularly at microwave frequencies using radar and radiometry. Here, we highlight key frontiers through which VWC has the potential to significantly increase our understanding of forest responses to water stress. To validate remote sensing observations of VWC at landscape scale and to better relate them to data assimilation model parameters, we introduce an ecosystem-scale analog of the pressure-volume curve, the non-linear relationship between average leaf or branch water potential and water content commonly used in plant hydraulics. The sources of variability in these ecosystem-scale pressure-volume curves and their relationship to forest response to water stress are discussed. We further show to what extent diel, seasonal, and decadal dynamics of VWC reflect variations in different processes relating the tree response to water stress. VWC can also be used for inferring belowground conditions-which are difficult to impossible to observe directly. Lastly, we discuss how a dedicated geostationary spaceborne observational system for VWC, when combined with existing datasets, can capture diel and seasonal water dynamics to advance the science and applications of global forest vulnerability to future droughts.
Asunto(s)
Sequías , Ecosistema , Bosques , Hojas de la Planta , Árboles , XilemaRESUMEN
The absorption of atmospheric water directly into leaves enables plants to alleviate the water stress caused by low soil moisture, hydraulic resistance in the xylem and the effect of gravity on the water column, while enabling plants to scavenge small inputs of water from leaf-wetting events. By increasing the availability of water, and supplying it from the top of the canopy (in a direction facilitated by gravity), foliar uptake (FU) may be a significant process in determining how forests interact with climate, and could alter our interpretation of current metrics for hydraulic stress and sensitivity. FU has not been reported for lowland tropical rainforests; we test whether FU occurs in six common Amazonian tree genera in lowland Amazônia, and make a first estimation of its contribution to canopy-atmosphere water exchange. We demonstrate that FU occurs in all six genera and that dew-derived water may therefore be used to "pay" for some morning transpiration in the dry season. Using meteorological and canopy wetness data, coupled with empirically derived estimates of leaf conductance to FU (kfu ), we estimate that the contribution by FU to annual transpiration at this site has a median value of 8.2% (103 mm/year) and an interquartile range of 3.4%-15.3%, with the biggest sources of uncertainty being kfu and the proportion of time the canopy is wet. Our results indicate that FU is likely to be a common strategy and may have significant implications for the Amazon carbon budget. The process of foliar water uptake may also have a profound impact on the drought tolerance of individual Amazonian trees and tree species, and on the cycling of water and carbon, regionally and globally.
Asunto(s)
Árboles , Agua , Brasil , Bosques , Hojas de la Planta , Transpiración de Plantas , XilemaRESUMEN
Transpiration from the Amazon rainforest generates an essential water source at a global and local scale. However, changes in rainforest function with climate change can disrupt this process, causing significant reductions in precipitation across Amazonia, and potentially at a global scale. We report the only study of forest transpiration following a long-term (>10 year) experimental drought treatment in Amazonian forest. After 15 years of receiving half the normal rainfall, drought-related tree mortality caused total forest transpiration to decrease by 30%. However, the surviving droughted trees maintained or increased transpiration because of reduced competition for water and increased light availability, which is consistent with increased growth rates. Consequently, the amount of water supplied as rainfall reaching the soil and directly recycled as transpiration increased to 100%. This value was 25% greater than for adjacent nondroughted forest. If these drought conditions were accompanied by a modest increase in temperature (e.g., 1.5°C), water demand would exceed supply, making the forest more prone to increased tree mortality.
Asunto(s)
Sequías , Bosque Lluvioso , Árboles/fisiología , Cambio Climático , Suelo , Clima Tropical , Agua , Ciclo HidrológicoRESUMEN
The tropics are predicted to become warmer and drier, and understanding the sensitivity of tree species to drought is important for characterizing the risk to forests of climate change. This study makes use of a long-term drought experiment in the Amazon rainforest to evaluate the role of leaf-level water relations, leaf anatomy and their plasticity in response to drought in six tree genera. The variables (osmotic potential at full turgor, turgor loss point, capacitance, elastic modulus, relative water content and saturated water content) were compared between seasons and between plots (control and through-fall exclusion) enabling a comparison between short- and long-term plasticity in traits. Leaf anatomical traits were correlated with water relation parameters to determine whether water relations differed among tissues. The key findings were: osmotic adjustment occurred in response to the long-term drought treatment; species resistant to drought stress showed less osmotic adjustment than drought-sensitive species; and water relation traits were correlated with tissue properties, especially the thickness of the abaxial epidermis and the spongy mesophyll. These findings demonstrate that cell-level water relation traits can acclimate to long-term water stress, and highlight the limitations of extrapolating the results of short-term studies to temporal scales associated with climate change.
Asunto(s)
Sequías , Hojas de la Planta/fisiología , Bosque Lluvioso , Agua/fisiología , Modelos Lineales , Modelos Teóricos , Presión , Probabilidad , Estaciones del AñoRESUMEN
Determining climate change feedbacks from tropical rainforests requires an understanding of how carbon gain through photosynthesis and loss through respiration will be altered. One of the key changes that tropical rainforests may experience under future climate change scenarios is reduced soil moisture availability. In this study we examine if and how both leaf photosynthesis and leaf dark respiration acclimate following more than 12 years of experimental soil moisture deficit, via a through-fall exclusion experiment (TFE) in an eastern Amazonian rainforest. We find that experimentally drought-stressed trees and taxa maintain the same maximum leaf photosynthetic capacity as trees in corresponding control forest, independent of their susceptibility to drought-induced mortality. We hypothesize that photosynthetic capacity is maintained across all treatments and taxa to take advantage of short-lived periods of high moisture availability, when stomatal conductance (gs ) and photosynthesis can increase rapidly, potentially compensating for reduced assimilate supply at other times. Average leaf dark respiration (Rd ) was elevated in the TFE-treated forest trees relative to the control by 28.2 ± 2.8% (mean ± one standard error). This mean Rd value was dominated by a 48.5 ± 3.6% increase in the Rd of drought-sensitive taxa, and likely reflects the need for additional metabolic support required for stress-related repair, and hydraulic or osmotic maintenance processes. Following soil moisture deficit that is maintained for several years, our data suggest that changes in respiration drive greater shifts in the canopy carbon balance, than changes in photosynthetic capacity.
Asunto(s)
Sequías , Fotosíntesis , Bosque Lluvioso , Árboles/fisiología , Brasil , Ciclo del Carbono , Cambio Climático , Hojas de la Planta/fisiología , Transpiración de Plantas , Estaciones del Año , Suelo/química , Clima TropicalRESUMEN
Forest ecosystems face increasing drought exposure due to climate change, necessitating accurate measurements of vegetation water content to assess drought stress and tree mortality risks. Although Frequency Domain Reflectometry offers a viable method for monitoring stem water content by measuring dielectric permittivity, challenges arise from uncertainties in sensor calibration linked to wood properties and species variability, impeding its wider usage. We sampled tropical forest trees and palms in eastern Amazônia to evaluate how sensor output differences are controlled by wood density, temperature and taxonomic identity. Three individuals per species were felled and cut into segments within a diverse dataset comprising five dicotyledonous tree and three monocotyledonous palm species on a wide range of wood densities. Water content was estimated gravimetrically for each segment using a temporally explicit wet-up/dry-down approach and the relationship with the dielectric permittivity was examined. Woody tissue density had no significant impact on the calibration, but species identity and temperature significantly affected sensor readings. The temperature artefact was quantitatively important at large temperature differences, which may have led to significant bias of daily and seasonal water content dynamics in previous studies. We established the first tropical tree and palm calibration equation which performed well for estimating water content. Notably, we demonstrated that the sensitivity remained consistent across species, enabling the creation of a simplified one-slope calibration for accurate, species-independent measurements of relative water content. Our one-slope calibration serves as a general, species-independent standard calibration for assessing relative water content in woody tissue, offering a valuable tool for quantifying drought responses and stress in trees and forest ecosystems.
Asunto(s)
Bosques , Árboles , Clima Tropical , Agua , Madera , Madera/química , Agua/metabolismo , Árboles/fisiología , Ecosistema , Sequías , Arecaceae/fisiología , Arecaceae/metabolismo , BrasilRESUMEN
Are short-term responses by tropical rainforest to drought (e.g. during El Niño) sufficient to predict changes over the long-term, or from repeated drought? Using the world's only long-term (16-year) drought experiment in tropical forest we examine predictability from short-term measurements (1-2 years). Transpiration was maximized in droughted forest: it consumed all available throughfall throughout the 16 years of study. Leaf photosynthetic capacity [Formula: see text] was maintained, but only when averaged across tree size groups. Annual transpiration in droughted forest was less than in control, with initial reductions (at high biomass) imposed by foliar stomatal control. Tree mortality increased after year three, leading to an overall biomass loss of 40%; over the long-term, the main constraint on transpiration was thus imposed by the associated reduction in sapwood area. Altered tree mortality risk may prove predictable from soil and plant hydraulics, but additional monitoring is needed to test whether future biomass will stabilize or collapse. Allocation of assimilate differed over time: stem growth and reproductive output declined in the short-term, but following mortality-related changes in resource availability, both showed long-term resilience, with partial or full recovery. Understanding and simulation of these phenomena and related trade-offs in allocation will advance more effectively through greater use of optimization and probabilistic modelling approaches.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.
Asunto(s)
Sequías , Transpiración de Plantas , Bosque Lluvioso , Árboles/fisiología , Clima Tropical , Brasil , El Niño Oscilación del Sur , Estaciones del Año , Suelo/química , Árboles/crecimiento & desarrolloRESUMEN
Dry periods are predicted to become more frequent and severe in the future in some parts of the tropics, including Amazonia, potentially causing reduced productivity, higher tree mortality and increased emissions of stored carbon. Using a long-term (12 year) through-fall exclusion (TFE) experiment in the tropics, we test the hypothesis that trees produce leaves adapted to cope with higher levels of water stress, by examining the following leaf characteristics: area, thickness, leaf mass per area, vein density, stomatal density, the thickness of palisade mesophyll, spongy mesophyll and both of the epidermal layers, internal cavity volume and the average cell sizes of the palisade and spongy mesophyll. We also test whether differences in leaf anatomy are consistent with observed differential drought-induced mortality responses among taxa, and look for relationships between leaf anatomy, and leaf water relations and gas exchange parameters. Our data show that trees do not produce leaves that are more xeromorphic in response to 12 years of soil moisture deficit. However, the drought treatment did result in increases in the thickness of the adaxial epidermis (TFE: 20.5 ± 1.5 µm, control: 16.7 ± 1.0 µm) and the internal cavity volume (TFE: 2.43 ± 0.50 mm3 cm-2, control: 1.77 ± 0.30 mm3 cm-2). No consistent differences were detected between drought-resistant and drought-sensitive taxa, although interactions occurred between drought-sensitivity status and drought treatment for the palisade mesophyll thickness (P = 0.034) and the cavity volume of the leaves (P = 0.025). The limited response to water deficit probably reflects a tight co-ordination between leaf morphology, water relations and photosynthetic properties. This suggests that there is little plasticity in these aspects of plant anatomy in these taxa, and that phenotypic plasticity in leaf traits may not facilitate the acclimation of Amazonian trees to the predicted future reductions in dry season water availability.