Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(4): 1575-1590, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38296834

RESUMEN

Many bacteria form biofilms to protect themselves from predators or stressful environmental conditions. In the biofilm, bacteria are embedded in a protective extracellular matrix composed of polysaccharides, proteins and extracellular DNA (eDNA). eDNA most often is released from lysed bacteria or host mammalian cells, and it is the only matrix component most biofilms appear to have in common. However, little is known about the form DNA takes in the extracellular space, and how different non-canonical DNA structures such as Z-DNA or G-quadruplexes might contribute to its function in the biofilm. The aim of this study was to determine if non-canonical DNA structures form in eDNA-rich staphylococcal biofilms, and if these structures protect the biofilm from degradation by nucleases. We grew Staphylococcus epidermidis biofilms in laboratory media supplemented with hemin and NaCl to stabilize secondary DNA structures and visualized their location by immunolabelling and fluorescence microscopy. We furthermore visualized the macroscopic biofilm structure by optical coherence tomography. We developed assays to quantify degradation of Z-DNA and G-quadruplex DNA oligos by different nucleases, and subsequently investigated how these enzymes affected eDNA in the biofilms. Z-DNA and G-quadruplex DNA were abundant in the biofilm matrix, and were often present in a web-like structures. In vitro, the structures did not form in the absence of NaCl or mechanical shaking during biofilm growth, or in bacterial strains deficient in eDNA or exopolysaccharide production. We thus infer that eDNA and polysaccharides interact, leading to non-canonical DNA structures under mechanical stress when stabilized by salt. We also confirmed that G-quadruplex DNA and Z-DNA was present in biofilms from infected implants in a murine implant-associated osteomyelitis model. Mammalian DNase I lacked activity against Z-DNA and G-quadruplex DNA, while Micrococcal nuclease could degrade G-quadruplex DNA and S1 Aspergillus nuclease could degrade Z-DNA. Micrococcal nuclease, which originates from Staphylococcus aureus, may thus be key for dispersal of biofilm in staphylococci. In addition to its structural role, we show for the first time that the eDNA in biofilms forms a DNAzyme with peroxidase-like activity in the presence of hemin. While peroxidases are part of host defenses against pathogens, we now show that biofilms can possess intrinsic peroxidase activity in the extracellular matrix.


Asunto(s)
ADN Catalítico , ADN de Forma Z , G-Cuádruplex , Animales , Ratones , ADN Catalítico/metabolismo , Desoxirribonucleasa I/metabolismo , Nucleasa Microcócica/genética , Cloruro de Sodio , Hemina , ADN Bacteriano/metabolismo , Biopelículas , Staphylococcus/genética , ADN , Polisacáridos , Peroxidasa/metabolismo , Mamíferos/genética
2.
Nucleic Acids Res ; 51(4): 1571-1582, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36715345

RESUMEN

Noncanonical DNA structures, termed G-quadruplexes, are present in human genomic DNA and are important elements in many DNA metabolic processes. Multiple sites in the human genome have G-rich DNA stretches able to support formation of several consecutive G-quadruplexes. One of those sites is the telomeric overhang region that has multiple repeats of TTAGGG and is tightly associated with both cancer and aging. We investigated the folding of consecutive G-quadruplexes in both potassium- and sodium-containing solutions using single-molecule FRET spectroscopy, circular dichroism, thermal melting and molecular dynamics simulations. Our observations show coexistence of partially and fully folded DNA, the latter consisting of consecutive G-quadruplexes. Following the folding process over hours in sodium-containing buffers revealed fast G-quadruplex folding but slow establishment of thermodynamic equilibrium. We find that full consecutive G-quadruplex formation is inhibited by the many DNA structures randomly nucleating on the DNA, some of which are off-path conformations that need to unfold to allow full folding. Our study allows describing consecutive G-quadruplex formation in both nonequilibrium and equilibrium conditions by a unified picture, where, due to the many possible DNA conformations, full folding with consecutive G-quadruplexes as beads on a string is not necessarily achieved.


Asunto(s)
G-Cuádruplex , Humanos , ADN/química , Conformación de Ácido Nucleico , Termodinámica , Dicroismo Circular , Telómero , Sodio/química
3.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34876524

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has created an urgent need for new technologies to treat COVID-19. Here we report a 2'-fluoro protected RNA aptamer that binds with high affinity to the receptor binding domain (RBD) of SARS-CoV-2 spike protein, thereby preventing its interaction with the host receptor ACE2. A trimerized version of the RNA aptamer matching the three RBDs in each spike complex enhances binding affinity down to the low picomolar range. Binding mode and specificity for the aptamer-spike interaction is supported by biolayer interferometry, single-molecule fluorescence microscopy, and flow-induced dispersion analysis in vitro. Cell culture experiments using virus-like particles and live SARS-CoV-2 show that the aptamer and, to a larger extent, the trimeric aptamer can efficiently block viral infection at low concentration. Finally, the aptamer maintains its high binding affinity to spike from other circulating SARS-CoV-2 strains, suggesting that it could find widespread use for the detection and treatment of SARS-CoV-2 and emerging variants.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/metabolismo , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Humanos , Mutación , Pruebas de Neutralización , Conformación de Ácido Nucleico , Unión Proteica/efectos de los fármacos , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2/fisiología , Técnica SELEX de Producción de Aptámeros , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
4.
Chembiochem ; 22(10): 1811-1817, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33450114

RESUMEN

Several small-molecule ligands specifically bind and stabilize G-quadruplex (G4) nucleic acid structures, which are considered to be promising therapeutic targets. G4s are polymorphic structures of varying stability, and their formation is dynamic. Here, we investigate the mechanisms of ligand binding to dynamically populated human telomere G4 DNA by using the bisquinolinium based ligand Phen-DC3 and a combination of single-molecule FRET microscopy, ensemble FRET and CD spectroscopies. Different cations are used to tune G4 polymorphism and folding dynamics. We find that ligand binding occurs to pre-folded G4 structures and that Phen-DC3 also induces G4 formation in unfolded single strands. Following ligand binding to dynamically populated G4s, the DNA undergoes pronounced conformational redistributions that do not involve direct ligand-induced G4 conformational interconversion. On the contrary, the redistribution is driven by ligand-induced G4 folding and trapping of dynamically populated short-lived conformation states. Thus, ligand-induced stabilization does not necessarily require the initial presence of stably folded G4s.


Asunto(s)
G-Cuádruplex , Ligandos , Telómero/química , Transferencia Resonante de Energía de Fluorescencia , Humanos , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Quinolinas/química , Quinolinas/metabolismo
6.
Nat Methods ; 15(9): 669-676, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30171252

RESUMEN

Single-molecule Förster resonance energy transfer (smFRET) is increasingly being used to determine distances, structures, and dynamics of biomolecules in vitro and in vivo. However, generalized protocols and FRET standards to ensure the reproducibility and accuracy of measurements of FRET efficiencies are currently lacking. Here we report the results of a comparative blind study in which 20 labs determined the FRET efficiencies (E) of several dye-labeled DNA duplexes. Using a unified, straightforward method, we obtained FRET efficiencies with s.d. between ±0.02 and ±0.05. We suggest experimental and computational procedures for converting FRET efficiencies into accurate distances, and discuss potential uncertainties in the experiment and the modeling. Our quantitative assessment of the reproducibility of intensity-based smFRET measurements and a unified correction procedure represents an important step toward the validation of distance networks, with the ultimate aim of achieving reliable structural models of biomolecular systems by smFRET-based hybrid methods.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Laboratorios/normas , Reproducibilidad de los Resultados
7.
Analyst ; 145(17): 5836-5844, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32648858

RESUMEN

Two types of clinically important nucleic acid biomarkers, microRNA (miRNA) and circulating tumor DNA (ctDNA) were detected and quantified from human serum using an amplification-free fluorescence hybridization assay. Specifically, miRNAs hsa-miR-223-3p and hsa-miR-486-5p with relevance for rheumatoid arthritis and cancer related mutations BRAF and KRAS of ctDNA were directly measured. The required oligonucleotide probes for the assay were rationally designed and synthesized through a novel "clickable" approach which is time and cost-effective. With no need for isolating nucleic acid components from serum, the fluoresence-based assay took only 1 hour. Detection and absolute quantification of targets was successfully achieved despite their notoriously low abundance, with a precision down to individual nucleotides. Obtained miRNA and ctDNA amounts showed overall a good correlation with current techniques. With appropriate probes, our novel assay and signal boosting approach could become a useful tool for point-of-care measuring other low abundance nucleic acid biomarkers.


Asunto(s)
ADN Tumoral Circulante , MicroARNs , Ácidos Nucleicos , Biomarcadores , Humanos , MicroARNs/genética , Hibridación de Ácido Nucleico
8.
Nucleic Acids Res ; 44(22): 11024-11032, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27799468

RESUMEN

G-quadruplexes (G4s) are DNA secondary structures that are capable of forming and function in vivo The propensity of G4s to exhibit extreme polymorphism and complex dynamics is likely to influence their cellular function, yet a clear microscopic picture of their folding process is lacking. Here we employed single-molecule FRET microscopy to obtain a direct view of the folding and underlying conformational dynamics of G4s formed by the human telomeric sequence in potassium containing solutions. Our experiments allowed detecting several folded states that are populated in the course of G4 folding and determining their folding energetics and timescales. Combining the single-molecule data with molecular dynamics simulations enabled obtaining a structural description of the experimentally observed folded states. Our work thus provides a comprehensive thermodynamic and kinetic description of the folding of G4s that proceeds through a complex multi-route pathway, involving several marginally stable conformational states.


Asunto(s)
G-Cuádruplex , Oligonucleótidos/química , Telómero/química , Humanos , Simulación de Dinámica Molecular , Potasio/química , Termodinámica
9.
Nucleic Acids Res ; 44(1): 464-71, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26615192

RESUMEN

G-quadruplex structures can occur throughout the genome, including at telomeres. They are involved in cellular regulation and are potential drug targets. Human telomeric G-quadruplex structures can fold into a number of different conformations and show large conformational diversity. To elucidate the different G-quadruplex conformations and their dynamics, we investigated telomeric G-quadruplex folding using single molecule FRET microscopy in conditions where it was previously believed to yield low structural heterogeneity. We observed four FRET states in Na(+) buffers: an unfolded state and three G-quadruplex related states that can interconvert between each other. Several of these states were almost equally populated at low to medium salt concentrations. These observations appear surprising as previous studies reported primarily one G-quadruplex conformation in Na(+) buffers. Our results permit, through the analysis of the dynamics of the different observed states, the identification of a more stable G-quadruplex conformation and two transient G-quadruplex states. Importantly these results offer a unique view into G-quadruplex topological heterogeneity and conformational dynamics.


Asunto(s)
G-Cuádruplex , Sodio/química , Telómero/química , Transferencia Resonante de Energía de Fluorescencia , Humanos , Microscopía , Conformación de Ácido Nucleico , Secuencias Repetitivas de Ácidos Nucleicos , Soluciones , Telómero/genética
10.
Biophys J ; 111(6): 1278-1286, 2016 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-27653486

RESUMEN

Single-molecule total internal reflection fluorescence (TIRF) microscopy constitutes an umbrella of powerful tools that facilitate direct observation of the biophysical properties, population heterogeneities, and interactions of single biomolecules without the need for ensemble synchronization. Due to the low signal/noise ratio in single-molecule TIRF microscopy experiments, it is important to determine the local background intensity, especially when the fluorescence intensity of the molecule is used quantitatively. Here we compare and evaluate the performance of different aperture-based background estimators used particularly in single-molecule Förster resonance energy transfer. We introduce the general concept of multiaperture signatures and use this technique to demonstrate how the choice of background can affect the measured fluorescence signal considerably. A new, to our knowledge, and simple background estimator is proposed, called the local statistical percentile (LSP). We show that the LSP background estimator performs as well as current background estimators at low molecular densities and significantly better in regions of high molecular densities. The LSP background estimator is thus suited for single-particle TIRF microscopy of dense biological samples in which the intensity itself is an observable of the technique.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Microscopía Fluorescente , Imagen Individual de Molécula , Algoritmos , Simulación por Computador , ADN de Cadena Simple/química , Fluorescencia , Modelos Moleculares , Fotones , Propiedades de Superficie
11.
Bioconjug Chem ; 27(9): 2176-87, 2016 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-27501274

RESUMEN

Approximately 30% of the ATP generated in the living cell is utilized by P-type ATPase primary active transporters to generate and maintain electrochemical gradients across biological membranes. P-type ATPases undergo large conformational changes during their functional cycle to couple ATP hydrolysis in the cytoplasmic domains to ion transport across the membrane. The Ca(2+)-ATPase from Listeria monocytogenes, LMCA1, was found to be a suitable model of P-type ATPases and was engineered to facilitate single-molecule FRET studies of transport-related structural changes. Mutational analyses of the endogenous cysteine residues in LMCA1 were performed to reduce background labeling without compromising activity. Pairs of cysteines were introduced into the optimized low-reactivity background, and labeled with maleimide derivatives of Cy3 and Cy5 resulting in site-specifically double-labeled protein with moderate activity. Ensemble and confocal single-molecule FRET studies revealed changes in FRET distribution related to structural changes during the transport cycle, consistent with those observed by X-ray crystallography for the sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA). Notably, the cytosolic headpiece of LMCA1 was found to be distinctly more compact in the E1 state than in the E2 state. Thus, the established experimental system should allow future real-time FRET studies of the structural dynamics of LMCA1 as a representative P-type ATPase.


Asunto(s)
ATPasas Transportadoras de Calcio/genética , ATPasas Transportadoras de Calcio/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Listeria monocytogenes/enzimología , Ingeniería de Proteínas , ATPasas Transportadoras de Calcio/química , Maleimidas/química , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica
12.
Small ; 11(15): 1811-7, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25565140

RESUMEN

Logic gates are devices that can perform logical operations by transforming a set of inputs into a predictable single detectable output. The hybridization properties, structure, and function of nucleic acids can be used to make DNA-based logic gates. These devices are important modules in molecular computing and biosensing. The ideal logic gate system should provide a wide selection of logical operations, and be integrable in multiple copies into more complex structures. Here we show the successful construction of a small DNA-based logic gate complex that produces fluorescent outputs corresponding to the operation of the six Boolean logic gates AND, NAND, OR, NOR, XOR, and XNOR. The logic gate complex is shown to work also when implemented in a three-dimensional DNA origami box structure, where it controlled the position of the lid in a closed or open position. Implementation of multiple microRNA sensitive DNA locks on one DNA origami box structure enabled fuzzy logical operation that allows biosensing of complex molecular signals. Integrating logic gates with DNA origami systems opens a vast avenue to applications in the fields of nanomedicine for diagnostics and therapeutics.


Asunto(s)
Computadores Moleculares , ADN/química , ADN/ultraestructura , Lógica Difusa , Procesamiento de Señales Asistido por Computador/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo
13.
RNA ; 19(4): 517-26, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23404895

RESUMEN

HIV-1 reverse transcription is primed by a cellular tRNAlys3 molecule that binds to the primer binding site (PBS) in the genomic RNA. An additional interaction between the tRNA molecule and the primer activation signal (PAS) is thought to regulate the initiation of reverse transcription. The mechanism of tRNA annealing onto the HIV-1 genome was examined using ensemble and single-molecule Förster Resonance Energy Transfer (FRET) assays, in which fluorescent donor and acceptor molecules were covalently attached to an RNA template mimicking the PBS region. The role of the viral nucleocapsid (NC) protein in tRNA annealing was studied. Both heat annealing and NC-mediated annealing of tRNAlys3 were found to change the FRET efficiency, and thus the conformation of the HIV-1 RNA template. The results are consistent with a model for tRNA annealing that involves an interaction between the tRNAlys3 molecule and the PAS sequence in the HIV-1 genome. The NC protein may stimulate the interaction of the tRNA molecule with the PAS, thereby regulating the initiation of reverse transcription.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , VIH-1/metabolismo , ARN de Transferencia de Lisina/química , Transcripción Reversa , Genoma Viral , VIH-1/genética , Interacciones Huésped-Patógeno , Humanos , Conformación de Ácido Nucleico , ARN de Transferencia de Lisina/genética , ARN Viral/genética , ARN Viral/metabolismo
14.
Chemphyschem ; 16(12): 2562-70, 2015 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-26174803

RESUMEN

FRET spectroscopy is a promising approach for investigating the dynamics of G-quadruplex DNA folds and improving the targeting of G-quadruplexes by potential anticancer compounds. To better interpret such experiments, classical and replica-exchange molecular dynamics simulations and fluorescence-lifetime measurements are used to understand the behavior of a range of Cy3-based dyes attached to the 3' end of G-quadruplex DNA. The simulations revealed that the dyes interact extensively with the G-quadruplex. Identification of preferred dye positions relative to the G-quadruplex in the simulations allows the impact of dye-DNA interactions on FRET results to be determined. All the dyes show significant deviations from the common approximation of being freely rotating and not interacting with the host, but one of the Cy3 dye analogues is slightly closer to this case.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , G-Cuádruplex , Conformación de Ácido Nucleico
15.
Faraday Discuss ; 184: 131-42, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26416760

RESUMEN

Förster resonance energy transfer (FRET) microscopy at the single molecule level has the potential to yield information on intra and intermolecular distances within the 2-10 nm range of molecules or molecular complexes that undergo frequent conformation changes. A pre-requirement for obtaining accurate distance information is to determine quantitative instrument independent FRET efficiency values. Here, we applied and evaluated a procedure to determine quantitative FRET efficiencies directly from individual fluorescence time traces of surface immobilized DNA molecules without the need for external calibrants. To probe the robustness of the approach over a wide range of FRET efficiencies we used a set of doubly labelled double stranded DNA samples, where the acceptor position was varied systematically. Interestingly, we found that fluorescence contributions arising from direct acceptor excitation following donor excitation are intrinsically taken into account in these conditions as other correction factors can compensate for inaccurate values of these parameters. We give here guidelines, that can be used through tools within the iSMS software (), for determining quantitative FRET and assess uncertainties linked with the procedure. Our results provide insights into the experimental parameters governing quantitative FRET determination, which is essential for obtaining accurate structural information from a wide range of biomolecules.


Asunto(s)
ADN/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Fluorescencia , Microscopía Fluorescente
16.
Nature ; 459(7243): 73-6, 2009 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-19424153

RESUMEN

The unique structural motifs and self-recognition properties of DNA can be exploited to generate self-assembling DNA nanostructures of specific shapes using a 'bottom-up' approach. Several assembly strategies have been developed for building complex three-dimensional (3D) DNA nanostructures. Recently, the DNA 'origami' method was used to build two-dimensional addressable DNA structures of arbitrary shape that can be used as platforms to arrange nanomaterials with high precision and specificity. A long-term goal of this field has been to construct fully addressable 3D DNA nanostructures. Here we extend the DNA origami method into three dimensions by creating an addressable DNA box 42 x 36 x 36 nm(3) in size that can be opened in the presence of externally supplied DNA 'keys'. We thoroughly characterize the structure of this DNA box using cryogenic transmission electron microscopy, small-angle X-ray scattering and atomic force microscopy, and use fluorescence resonance energy transfer to optically monitor the opening of the lid. Controlled access to the interior compartment of this DNA nanocontainer could yield several interesting applications, for example as a logic sensor for multiple-sequence signals or for the controlled release of nanocargos.


Asunto(s)
ADN/química , Nanoestructuras/química , Conformación de Ácido Nucleico , Microscopía por Crioelectrón , Imagenología Tridimensional , Microscopía de Fuerza Atómica
17.
J Am Chem Soc ; 136(31): 11115-20, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25051012

RESUMEN

Optical detection of molecular targets typically requires immobilization, separation, or chemical or enzymatic processing. An important exception is aptamers that allow optical detection in solution based on conformational changes. This method, however, requires the laborious selection of aptamers with high target specificity and affinity, and the ability to undergo the required conformational changes. Here we report on an alternative generic scheme for detecting small molecules and proteins in solution based on a shift in the equilibrium of DNA-based strand displacement competition reaction. The shift occurs upon binding of a protein, for example, an antibody to its target. We demonstrate nanomolar detection of small molecules such as biotin, digoxigenin, vitamin D, and folate, in buffer and in plasma. The method is flexible, and we also show nanomolar detection of the respective antibodies or protein targets of these molecules. The detection scheme provides a generic alternative to aptamers for detection of analytes.


Asunto(s)
Técnicas Biosensibles/métodos , ADN/metabolismo , Proteínas/análisis , Unión Competitiva , Biotina/análisis , Análisis Químico de la Sangre , Electroquímica , Transferencia Resonante de Energía de Fluorescencia , Proteínas/metabolismo , Saliva/química , Estreptavidina/análisis
18.
J Am Chem Soc ; 136(25): 8957-62, 2014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24857342

RESUMEN

DNA hybridization allows the design and assembly of dynamic DNA-based molecular devices. Such structures usually accomplish their function by the addition of fuel strands that drive the structure from one conformation to a new one or by internal changes in DNA hybridization. We report here on the performance and robustness of one of these devices by the detailed study of a dynamic DNA actuator. The DNA actuator was chosen as a model system, as it is the device with most discrete states to date. It is able to reversibly slide between 11 different states and can in principle function both autonomously and nonautonomously. The 11 states of the actuator were investigated by single molecule Förster Resonance Energy Transfer (smFRET) microscopy to obtain information on the static and dynamic heterogeneities of the device. Our results show that the DNA actuator can be effectively locked in several conformations with the help of well-designed DNA lock strands. However, the device also shows pronounced static and dynamic heterogeneities both in the unlocked and locked modes, and we suggest possible structural models. Our study allows for the direct visualization of the conformational diversity and movement of the dynamic DNA-based device and shows that complex DNA-based devices are inherently heterogeneous. Our results also demonstrate that single molecule techniques are a powerful tool for structural dynamics studies and provide a stringent test for the performance of molecular devices made out of DNA.


Asunto(s)
ADN/química , Transferencia Resonante de Energía de Fluorescencia
19.
Methods ; 64(1): 36-42, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23583888

RESUMEN

Single molecule FRET microscopy is an attractive technique for studying structural dynamics and conformational diversity of nucleic acid structures. Some of its strengths are that it can follow structural changes on a fast time scale and identify conformation distributions arising from dynamic or static population heterogeneity. Here, we give a description of the experiment and data analysis procedures of this method and detail what parameters are needed for FRET efficiency calculation. Using single molecule FRET data obtained on G-quadruplex DNA structures that exhibit large conformation diversity, we illustrate that the shape of the FRET distribution changes depending on what parameters are included in the data analysis procedure.


Asunto(s)
ADN/química , Transferencia Resonante de Energía de Fluorescencia/métodos , G-Cuádruplex
20.
Biochimie ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936685

RESUMEN

G-quadruplexes (G4s) are helical four-stranded nucleic acid structures that can form in guanine-rich sequences, which are mostly found in functional cellular regions, such as telomeres, promoters, and DNA replication origins. Great efforts are being made to target these structures towards the development of specific small molecule G4 binders for novel anti-cancer, neurological, and viral therapies. Here, we introduce an optical assay based on quenching of the intrinsic fluorescence of DNA G-quadruplexes for assessing and comparing the G4 binding affinity of various small molecule ligands in solutions. We show that the approach allows direct quantification of ligand binding to distinctive G4 topologies. We believe that this method will facilitate quick and reliable evaluation of small molecule G4 ligands and support their development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA