Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genetics ; 227(1)2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38408329

RESUMEN

We consider a simple diploid population-genetic model with potentially high variability of offspring numbers among individuals. Specifically, against a backdrop of Wright-Fisher reproduction and no selection, there is an additional probability that a big family occurs, meaning that a pair of individuals has a number of offspring on the order of the population size. We study how the pedigree of the population generated under this model affects the ancestral genetic process of a sample of size two at a single autosomal locus without recombination. Our population model is of the type for which multiple-merger coalescent processes have been described. We prove that the conditional distribution of the pairwise coalescence time given the random pedigree converges to a limit law as the population size tends to infinity. This limit law may or may not be the usual exponential distribution of the Kingman coalescent, depending on the frequency of big families. But because it includes the number and times of big families, it differs from the usual multiple-merger coalescent models. The usual multiple-merger coalescent models are seen as describing the ancestral process marginal to, or averaging over, the pedigree. In the limiting ancestral process conditional on the pedigree, the intervals between big families can be modeled using the Kingman coalescent but each big family causes a discrete jump in the probability of coalescence. Analogous results should hold for larger samples and other population models. We illustrate these results with simulations and additional analysis, highlighting their implications for inference and understanding of multilocus data.


Asunto(s)
Genética de Población , Modelos Genéticos , Linaje , Humanos , Densidad de Población
2.
Theor Popul Biol ; 87: 15-24, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23376155

RESUMEN

We apply recently developed inference methods based on general coalescent processes to DNA sequence data obtained from various marine species. Several of these species are believed to exhibit so-called shallow gene genealogies, potentially due to extreme reproductive behaviour, e.g. via Hedgecock's "reproduction sweepstakes". Besides the data analysis, in particular the inference of mutation rates and the estimation of the (real) time to the most recent common ancestor, we briefly address the question whether the genealogies might be adequately described by so-called Beta-coalescents (as opposed to Kingman's coalescent), allowing multiple mergers of genealogies. The choice of the underlying coalescent model for the genealogy has drastic implications for the estimation of the above quantities, in particular the real-time embedding of the genealogy.


Asunto(s)
Biología Marina , Ostreidae/genética , Análisis de Secuencia de ADN , Animales
3.
Theor Popul Biol ; 79(4): 155-73, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21296095

RESUMEN

We present and discuss new importance sampling schemes for the approximate computation of the sample probability of observed genetic types in the infinitely many sites model from population genetics. More specifically, we extend the 'classical framework', where genealogies are assumed to be governed by Kingman's coalescent, to the more general class of Lambda-coalescents and develop further Hobolth et al.'s (2008) idea of deriving importance sampling schemes based on 'compressed genetrees'. The resulting schemes extend earlier work by Griffiths and Tavaré (1994), Stephens and Donnelly (2000), Birkner and Blath (2008) and Hobolth et al. (2008). We conclude with a performance comparison of classical and new schemes for Beta- and Kingman coalescents.


Asunto(s)
Evolución Molecular , Frecuencia de los Genes/genética , Genética de Población/métodos , Mutación/genética , Animales , Cadenas de Markov , Modelos Genéticos , Método de Montecarlo , Muestreo
4.
Genetics ; 199(3): 841-56, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25575536

RESUMEN

The ability of the site-frequency spectrum (SFS) to reflect the particularities of gene genealogies exhibiting multiple mergers of ancestral lines as opposed to those obtained in the presence of population growth is our focus. An excess of singletons is a well-known characteristic of both population growth and multiple mergers. Other aspects of the SFS, in particular, the weight of the right tail, are, however, affected in specific ways by the two model classes. Using an approximate likelihood method and minimum-distance statistics, our estimates of statistical power indicate that exponential and algebraic growth can indeed be distinguished from multiple-merger coalescents, even for moderate sample sizes, if the number of segregating sites is high enough. A normalized version of the SFS (nSFS) is also used as a summary statistic in an approximate Bayesian computation (ABC) approach. The results give further positive evidence as to the general eligibility of the SFS to distinguish between the different histories.


Asunto(s)
Genética de Población/métodos , Modelos Genéticos , Teorema de Bayes , Funciones de Verosimilitud , Crecimiento Demográfico
5.
Genetics ; 193(1): 255-90, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23150600

RESUMEN

A large offspring-number diploid biparental multilocus population model of Moran type is our object of study. At each time step, a pair of diploid individuals drawn uniformly at random contributes offspring to the population. The number of offspring can be large relative to the total population size. Similar "heavily skewed" reproduction mechanisms have been recently considered by various authors (cf. e.g., Eldon and Wakeley 2006, 2008) and reviewed by Hedgecock and Pudovkin (2011). Each diploid parental individual contributes exactly one chromosome to each diploid offspring, and hence ancestral lineages can coalesce only when in distinct individuals. A separation-of-timescales phenomenon is thus observed. A result of Möhle (1998) is extended to obtain convergence of the ancestral process to an ancestral recombination graph necessarily admitting simultaneous multiple mergers of ancestral lineages. The usual ancestral recombination graph is obtained as a special case of our model when the parents contribute only one offspring to the population each time. Due to diploidy and large offspring numbers, novel effects appear. For example, the marginal genealogy at each locus admits simultaneous multiple mergers in up to four groups, and different loci remain substantially correlated even as the recombination rate grows large. Thus, genealogies for loci far apart on the same chromosome remain correlated. Correlation in coalescence times for two loci is derived and shown to be a function of the coalescence parameters of our model. Extending the observations by Eldon and Wakeley (2008), predictions of linkage disequilibrium are shown to be functions of the reproduction parameters of our model, in addition to the recombination rate. Correlations in ratios of coalescence times between loci can be high, even when the recombination rate is high and sample size is large, in large offspring-number populations, as suggested by simulations, hinting at how to distinguish between different population models.


Asunto(s)
Diploidia , Modelos Genéticos , Recombinación Genética , Algoritmos , Animales , Simulación por Computador , Evolución Molecular , Femenino , Sitios Genéticos , Genética de Población , Humanos , Masculino
6.
Genetics ; 195(3): 1037-53, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24026094

RESUMEN

Statistical properties of the site-frequency spectrum associated with Λ-coalescents are our objects of study. In particular, we derive recursions for the expected value, variance, and covariance of the spectrum, extending earlier results of Fu (1995) for the classical Kingman coalescent. Estimating coalescent parameters introduced by certain Λ-coalescents for data sets too large for full-likelihood methods is our focus. The recursions for the expected values we obtain can be used to find the parameter values that give the best fit to the observed frequency spectrum. The expected values are also used to approximate the probability a (derived) mutation arises on a branch subtending a given number of leaves (DNA sequences), allowing us to apply a pseudolikelihood inference to estimate coalescence parameters associated with certain subclasses of Λ-coalescents. The properties of the pseudolikelihood approach are investigated on simulated as well as real mtDNA data sets for the high-fecundity Atlantic cod (Gadus morhua). Our results for two subclasses of Λ-coalescents show that one can distinguish these subclasses from the Kingman coalescent, as well as between the Λ-subclasses, even for a moderate (maybe a few hundred) sample size.


Asunto(s)
Genética de Población/estadística & datos numéricos , Densidad de Población , Animales , Organismos Acuáticos/genética , Organismos Acuáticos/fisiología , Simulación por Computador , ADN Mitocondrial/genética , Femenino , Fertilidad/genética , Gadus morhua/genética , Gadus morhua/fisiología , Funciones de Verosimilitud , Masculino , Modelos Genéticos , Modelos Estadísticos , Mutación , Reproducción/genética
7.
J Math Biol ; 57(3): 435-65, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18347796

RESUMEN

One of the central problems in mathematical genetics is the inference of evolutionary parameters of a population (such as the mutation rate) based on the observed genetic types in a finite DNA sample. If the population model under consideration is in the domain of attraction of the classical Fleming-Viot process, such as the Wright-Fisher- or the Moran model, then the standard means to describe its genealogy is Kingman's coalescent. For this coalescent process, powerful inference methods are well-established. An important feature of the above class of models is, roughly speaking, that the number of offspring of each individual is small when compared to the total population size, and hence all ancestral collisions are binary only. Recently, more general population models have been studied, in particular in the domain of attraction of so-called generalised Lambda-Fleming-Viot processes, as well as their (dual) genealogies, given by the so-called Lambda-coalescents, which allow multiple collisions. Moreover, Eldon and Wakeley (Genetics 172:2621-2633, 2006) provide evidence that such more general coalescents might actually be more adequate to describe real populations with extreme reproductive behaviour, in particular many marine species. In this paper, we extend methods of Ethier and Griffiths (Ann Probab 15(2):515-545, 1987) and Griffiths and Tavaré (Theor Pop Biol 46:131-159, 1994a, Stat Sci 9:307-319, 1994b, Philos Trans Roy Soc Lond Ser B 344:403-410, 1994c, Math Biosci 12:77-98, 1995) to obtain a likelihood based inference method for general Lambda-coalescents. In particular, we obtain a method to compute (approximate) likelihood surfaces for the observed type probabilities of a given sample. We argue that within the (vast) family of Lambda-coalescents, the parametrisable sub-family of Beta(2 - alpha, alpha)-coalescents, where alpha in (1, 2], are of particular relevance. We illustrate our method using simulated datasets, thus obtaining maximum-likelihood estimators of mutation and demographic parameters.


Asunto(s)
Especiación Genética , Modelos Genéticos , Linaje , Probabilidad , Animales , Tasa de Natalidad , Intervalos de Confianza , Evolución Molecular , Genética de Población/métodos , Modelos Logísticos , Tamaño de la Muestra , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA