Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 764, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107741

RESUMEN

BACKGROUND: Chemoreception is crucial for insect fitness, underlying for instance food-, host-, and mate finding. Chemicals in the environment are detected by receptors from three divergent gene families: odorant receptors (ORs), gustatory receptors (GRs), and ionotropic receptors (IRs). However, how the chemoreceptor gene families evolve in parallel with ecological specializations remains poorly understood, especially in the order Coleoptera. Hence, we sequenced the genome and annotated the chemoreceptor genes of the specialised ambrosia beetle Trypodendron lineatum (Coleoptera, Curculionidae, Scolytinae) and compared its chemoreceptor gene repertoires with those of other scolytines with different ecological adaptations, as well as a polyphagous cerambycid species. RESULTS: We identified 67 ORs, 38 GRs, and 44 IRs in T. lineatum ('Tlin'). Across gene families, T. lineatum has fewer chemoreceptors compared to related scolytines, the coffee berry borer Hypothenemus hampei and the mountain pine beetle Dendroctonus ponderosae, and clearly fewer receptors than the polyphagous cerambycid Anoplophora glabripennis. The comparatively low number of chemoreceptors is largely explained by the scarcity of large receptor lineage radiations, especially among the bitter taste GRs and the 'divergent' IRs, and the absence of alternatively spliced GR genes. Only one non-fructose sugar receptor was found, suggesting several sugar receptors have been lost. Also, we found no orthologue in the 'GR215 clade', which is widely conserved across Coleoptera. Two TlinORs are orthologous to ORs that are functionally conserved across curculionids, responding to 2-phenylethanol (2-PE) and green leaf volatiles (GLVs), respectively. CONCLUSIONS: Trypodendron lineatum reproduces inside the xylem of decaying conifers where it feeds on its obligate fungal mutualist Phialophoropsis ferruginea. Like previous studies, our results suggest that stenophagy correlates with small chemoreceptor numbers in wood-boring beetles; indeed, the few GRs may be due to its restricted fungal diet. The presence of TlinORs orthologous to those detecting 2-PE and GLVs in other species suggests these compounds are important for T. lineatum. Future functional studies should test this prediction, and chemoreceptor annotations should be conducted on additional ambrosia beetle species to investigate whether few chemoreceptors is a general trait in this specialized group of beetles.


Asunto(s)
Receptores Odorantes , Animales , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Escarabajos/genética , Filogenia , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
2.
Mol Ecol ; 31(13): 3693-3707, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35532927

RESUMEN

Insects are able to detect a plethora of olfactory cues using a divergent family of odorant receptors (ORs). Despite the divergent nature of this family, related species frequently express several evolutionarily conserved OR orthologues. In the largest order of insects, Coleoptera, it remains unknown whether OR orthologues have conserved or divergent functions in different species. Using HEK293 cells, we addressed this question through functional characterization of two groups of OR orthologues in three species of the Curculionidae (weevil) family, the conifer-feeding bark beetles Ips typographus L. ("Ityp") and Dendroctonus ponderosae Hopkins ("Dpon") (Scolytinae), and the pine weevil Hylobius abietis L. ("Habi"; Molytinae). The ORs of H. abietis were annotated from antennal transcriptomes. The results show highly conserved response specificities, with one group of orthologues (HabiOR3/DponOR8/ItypOR6) responding exclusively to 2-phenylethanol (2-PE), and the other group (HabiOR4/DponOR9/ItypOR5) responding to angiosperm green leaf volatiles (GLVs). Both groups of orthologues belong to the coleopteran OR subfamily 2B, and share a common ancestor with OR5 in the cerambycid Megacyllene caryae, also tuned to 2-PE, suggesting a shared evolutionary history of 2-PE receptors across two beetle superfamilies. The detected compounds are ecologically relevant for conifer-feeding curculionids, and are probably linked to fitness, with GLVs being used to avoid angiosperm nonhost plants, and 2-PE being important for intraspecific communication and/or playing a putative role in beetle-microbe symbioses. To our knowledge, this study is the first to reveal evolutionary conservation of OR functions across several beetle species and hence sheds new light on the functional evolution of insect ORs.


Asunto(s)
Receptores Odorantes , Tracheophyta , Gorgojos , Animales , Células HEK293 , Humanos , Odorantes , Receptores Odorantes/genética , Gorgojos/genética
3.
Front Physiol ; 14: 1155129, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37020460

RESUMEN

Introduction: The striped ambrosia beetle Trypodendron lineatum (Coleoptera, Curculionidae, Scolytinae) is a major forest pest in the Holarctic region. It uses an aggregation pheromone and host and non-host volatiles to locate suitable host trees, primarily stressed or dying conifer trees. The beetles bore into the xylem and inoculate spores of their obligate fungal mutualist Phialophoropsis ferruginea inside their excavated egg galleries, with the fungus serving as the main food source for the developing larvae. Olfactory sensory neuron (OSN) responses to pheromones and host volatiles are poorly understood in T. lineatum and other ambrosia beetles, and nothing is known about potential responses to fungal volatiles. Methods: We screened responses of OSNs present in 170 antennal olfactory sensilla using single sensillum recordings (SSR) and 57 odor stimuli, including pheromones, host and non-host compounds, as well as volatiles produced by P. ferruginea and fungal symbionts of other scolytine beetles. Results and Discussion: Thirteen OSN classes were characterized based on their characteristic response profiles. An OSN class responding to the aggregation pheromone lineatin was clearly the most abundant on the antennae. In addition, four OSN classes responded specifically to volatile compounds originating from the obligate fungal mutualist and three responded to non-host plant volatiles. Our data also show that T. lineatum has OSN classes tuned to pheromones of other bark beetles. Several OSN classes showed similar response profiles to those previously described in the sympatric bark beetle Ips typographus, which may reflect their shared ancestry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA