Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Neurol ; 21(1): 154, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33836684

RESUMEN

BACKGROUND: The cortical microvascular cerebral blood flow response (CBF) to different changes in head-of-bed (HOB) position has been shown to be altered in acute ischemic stroke (AIS) by diffuse correlation spectroscopy (DCS) technique. However, the relationship between these relative ΔCBF changes and associated systemic blood pressure changes has not been studied, even though blood pressure is a major driver of cerebral blood flow. METHODS: Transcranial DCS data from four studies measuring bilateral frontal microvascular cerebral blood flow in healthy controls (n = 15), patients with asymptomatic severe internal carotid artery stenosis (ICA, n = 27), and patients with acute ischemic stroke (AIS, n = 72) were aggregated. DCS-measured CBF was measured in response to a short head-of-bed (HOB) position manipulation protocol (supine/elevated/supine, 5 min at each position). In a sub-group (AIS, n = 26; ICA, n = 14; control, n = 15), mean arterial pressure (MAP) was measured dynamically during the protocol. RESULTS: After elevated positioning, DCS CBF returned to baseline supine values in controls (p = 0.890) but not in patients with AIS (9.6% [6.0,13.3], mean 95% CI, p < 0.001) or ICA stenosis (8.6% [3.1,14.0], p = 0.003)). MAP in AIS patients did not return to baseline values (2.6 mmHg [0.5, 4.7], p = 0.018), but in ICA stenosis patients and controls did. Instead ipsilesional but not contralesional CBF was correlated with MAP (AIS 6.0%/mmHg [- 2.4,14.3], p = 0.038; ICA stenosis 11.0%/mmHg [2.4,19.5], p < 0.001). CONCLUSIONS: The observed associations between ipsilateral CBF and MAP suggest that short HOB position changes may elicit deficits in cerebral autoregulation in cerebrovascular disorders. Additional research is required to further characterize this phenomenon.


Asunto(s)
Presión Arterial , Estenosis Carotídea/fisiopatología , Circulación Cerebrovascular , Accidente Cerebrovascular Isquémico/fisiopatología , Posición Supina/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Velocidad del Flujo Sanguíneo/fisiología , Presión Sanguínea , Isquemia Encefálica/fisiopatología , Estudios de Casos y Controles , Femenino , Inclinación de Cabeza/fisiología , Hemodinámica , Homeostasis , Humanos , Masculino , Persona de Mediana Edad , Accidente Cerebrovascular/fisiopatología
2.
Sleep ; 46(8)2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37336476

RESUMEN

STUDY OBJECTIVES: We aimed to characterize the cerebral hemodynamic response to obstructive sleep apnea/hypopnea events, and evaluate their association to polysomnographic parameters. The characterization of the cerebral hemodynamics in obstructive sleep apnea (OSA) may add complementary information to further the understanding of the severity of the syndrome beyond the conventional polysomnography. METHODS: Severe OSA patients were studied during night sleep while monitored by polysomnography. Transcranial, bed-side diffuse correlation spectroscopy (DCS) and frequency-domain near-infrared diffuse correlation spectroscopy (NIRS-DOS) were used to follow microvascular cerebral hemodynamics in the frontal lobes of the cerebral cortex. Changes in cerebral blood flow (CBF), total hemoglobin concentration (THC), and cerebral blood oxygen saturation (StO2) were analyzed. RESULTS: We considered 3283 obstructive apnea/hypopnea events from sixteen OSA patients (Age (median, interquartile range) 57 (52-64.5); females 25%; AHI (apnea-hypopnea index) 84.4 (76.1-93.7)). A biphasic response (maximum/minimum followed by a minimum/maximum) was observed for each cerebral hemodynamic variable (CBF, THC, StO2), heart rate and peripheral arterial oxygen saturation (SpO2). Changes of the StO2 followed the dynamics of the SpO2, and were out of phase from the THC and CBF. Longer events were associated with larger CBF changes, faster responses and slower recoveries. Moreover, the extrema of the response to obstructive hypopneas were lower compared to apneas (p < .001). CONCLUSIONS: Obstructive apneas/hypopneas cause profound, periodic changes in cerebral hemodynamics, including periods of hyper- and hypo-perfusion and intermittent cerebral hypoxia. The duration of the events is a strong determinant of the cerebral hemodynamic response, which is more pronounced in apnea than hypopnea events.


Asunto(s)
Obstrucción de las Vías Aéreas , Síndromes de la Apnea del Sueño , Apnea Obstructiva del Sueño , Femenino , Humanos , Hemodinámica , Espectroscopía Infrarroja Corta
3.
J Neurol ; 266(4): 990-997, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30739181

RESUMEN

BACKGROUND AND AIMS: Previously, microvascular cerebral blood flow (CBF) response to a mild head-of-bed (HOB) elevation has been shown to be altered in acute ischemic stroke (AIS) by diffuse correlation spectroscopy (DCS). We have hypothesized that early CBF response is related to the functional outcome. METHODS: Patients with a non-lacunar AIS in the anterior circulation were monitored by DCS to measure relative CBF (ΔrCBF) on the frontal lobes bilaterally during a 0°-30° HOB elevation at early (≤ 12) or late (> 12) hours from symptom onset. National Institutes of Health Stroke Scale (NIHSS) scores were recorded at baseline at 24 and at 48 h. Functional outcome was measured by the modified Rankin Scale (mRS) at 3 months. RESULTS: Thirty-eight (n = 38) AIS patients [baseline NIHSS = 19 (interquartile range: 16, 21)] were studied. ΔrCBF decreased similarly in both hemispheres (p = 0.4) when HOB was elevated and was not associated with baseline and follow-up NIHSS scores or patient demographics. At the early phase (n = 17), a lower or paradoxical ΔrCBF response to HOB elevation was associated with an unfavorable functional outcome (mRS > 2) in the ipsilesional (but not in the contralesional) hemisphere (p = 0.010). ΔrCBF response in the late acute phase was not related to mRS. CONCLUSIONS: Early CBF response to mild HOB elevation in the ipsilesional hemisphere is related to functional outcome. Further studies may enable optical monitoring at the bedside to individualize management strategies in the early phase of AIS.


Asunto(s)
Isquemia Encefálica/diagnóstico , Circulación Cerebrovascular , Lóbulo Frontal/fisiopatología , Microvasos/fisiopatología , Postura , Accidente Cerebrovascular/diagnóstico , Anciano , Anciano de 80 o más Años , Isquemia Encefálica/fisiopatología , Isquemia Encefálica/terapia , Circulación Cerebrovascular/fisiología , Estudios de Cohortes , Femenino , Lóbulo Frontal/irrigación sanguínea , Humanos , Masculino , Postura/fisiología , Índice de Severidad de la Enfermedad , Espectroscopía Infrarroja Corta , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/terapia , Factores de Tiempo , Resultado del Tratamiento
4.
PLoS One ; 13(3): e0194204, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29538409

RESUMEN

MOTIVATION: Obstructive sleep apnea (OSA) can impair cerebral vasoreactivity and is associated with an increased risk of cerebrovascular disease. Unfortunately, an easy-to-use, non-invasive, portable monitor of cerebral vasoreactivity does not exist. Therefore, we have evaluated the use of near-infrared diffuse correlation spectroscopy to measure the microvascular cerebral blood flow (CBF) response to a mild head-of-bed position change as a biomarker for the evaluation of cerebral vasoreactivity alteration due to chronic OSA. Furthermore, we have monitored the effect of two years of continuous positive airway pressure (CPAP) treatment on the cerebral vasoreactivity. METHODOLOGY: CBF was measured at different head-of-bed position changes (supine to 30° to supine) in sixty-eight patients with OSA grouped according to severity (forty moderate to severe, twenty-eight mild) and in fourteen control subjects without OSA. A subgroup (n = 13) with severe OSA was measured again after two years of CPAP treatment. RESULTS: All patients and controls showed a similar CBF response after changing position from supine to 30° (p = 0.819), with a median (confidence interval) change of -17.5 (-10.3, -22.9)%. However, when being tilted back to the supine position, while the control group (p = 0.091) and the mild patients with OSA (p = 0.227) recovered to the initial baseline, patients with moderate and severe OSA did not recover to the baseline (9.8 (0.8, 12.9)%, p < 0.001) suggesting altered cerebral vasoreactivity. This alteration was correlated with OSA severity defined by the apnea-hypopnea index, and with mean nocturnal arterial oxygen saturation. The CBF response was normalized after two years of CPAP treatment upon follow-up measurements. CONCLUSION: In conclusion, microvascular CBF response to a head-of-bed challenge measured by diffuse correlation spectroscopy suggests that moderate and severe patients with OSA have altered cerebral vasoreactivity related to OSA severity. This may normalize after two years of CPAP treatment.


Asunto(s)
Circulación Cerebrovascular , Microcirculación , Apnea Obstructiva del Sueño/fisiopatología , Adulto , Velocidad del Flujo Sanguíneo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Respiración con Presión Positiva , Apnea Obstructiva del Sueño/terapia , Posición Supina
5.
Biomed Opt Express ; 9(3): 1262-1271, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29541519

RESUMEN

In this pilot study, we have evaluated bedside diffuse optical monitoring combining diffuse correlation spectroscopy and near-infrared diffuse optical spectroscopy to assess the effect of thrombolysis with an intravenous recombinant tissue plasminogen activator (rtPA) on cerebral hemodynamics in an acute ischemic stroke. Frontal lobes of five patients with an acute middle cerebral artery occlusion were measured bilaterally during rtPA treatment. Both ipsilesional and contralesional hemispheres showed significant increases in cerebral blood flow, total hemoglobin concentration and oxy-hemoglobin concentration during the first 2.5 hours after rtPA bolus. The increases were faster and higher in the ipsilesional hemisphere. The results show that bedside optical monitoring can detect the effect of reperfusion therapy for ischemic stroke in real-time.

6.
Neurophotonics ; 5(4): 045003, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30681667

RESUMEN

Obstructive apnea causes periodic changes in cerebral and systemic hemodynamics, which may contribute to the increased risk of cerebrovascular disease of patients with obstructive sleep apnea (OSA) syndrome. The improved understanding of the consequences of an apneic event on the brain perfusion may improve our knowledge of these consequences and then allow for the development of preventive strategies. Our aim was to characterize the typical microvascular, cortical cerebral blood flow (CBF) changes in an OSA population during an apneic event. Sixteen patients (age 58 ± 8 years , 75% male) with a high risk of severe OSA were measured with a polysomnography device and with diffuse correlation spectroscopy (DCS) during one night of sleep with 1365 obstructive apneic events detected. All patients were later confirmed to suffer from severe OSA syndrome with a mean of 83 ± 15 apneas and hypopneas per hour. DCS has been shown to be able to characterize the microvascular CBF response to each event with a sufficient contrast-to-noise ratio to reveal its dynamics. It has also revealed that an apnea causes a peak increase of microvascular CBF ( 30 ± 17 % ) at the end of the event followed by a drop ( - 20 ± 12 % ) similar to what was observed in macrovascular CBF velocity of the middle cerebral artery. This study paves the way for the utilization of DCS for further studies on these populations.

7.
Neurophotonics ; 4(4): 045006, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29226175

RESUMEN

Neural activity is an important biomarker for the presence of neurodegenerative diseases, cerebrovascular alterations, and brain trauma; furthermore, it is a surrogate marker for treatment effects. These pathologies may occur and evolve in a long time-period, thus, noninvasive, transcutaneous techniques are necessary to allow a longitudinal follow-up. In the present work, we have customized noninvasive, transcutaneous, diffuse correlation spectroscopy (DCS) to localize changes in cerebral blood flow (CBF) induced by neural activity. We were able to detect changes in CBF in the somatosensory cortex by using a model of electrical forepaw stimulation in rats. The suitability of DCS measurements for longitudinal monitoring was demonstrated by performing multiple sessions with the same animals at different ages (from 6 to 18 months). In addition, functional DCS has been cross-validated by comparison with functional magnetic resonance imaging (fMRI) in the same animals in a subset of the time-points. The overall results obtained with transcutaneous DCS demonstrates that it can be utilized in longitudinal studies safely and reproducibly to locate changes in CBF induced by neural activity in the small animal brain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA