Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Syst Biol ; 19(1): e11037, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36598022

RESUMEN

Interleukin-10 (IL-10) is an anti-inflammatory cytokine that is active as a swapped domain dimer and is used in bacterial therapy of gut inflammation. IL-10 can be used as treatment of a wide range of pulmonary diseases. Here we have developed a non-pathogenic chassis (CV8) of the human lung bacterium Mycoplasma pneumoniae (MPN) to treat lung diseases. We find that IL-10 expression by MPN has a limited impact on the lung inflammatory response in mice. To solve these issues, we rationally designed a single-chain IL-10 (SC-IL10) with or without surface mutations, using our protein design software (ModelX and FoldX). As compared to the IL-10 WT, the designed SC-IL10 molecules increase the effective expression in MPN four-fold, and the activity in mouse and human cell lines between 10 and 60 times, depending on the cell line. The SC-IL10 molecules expressed in the mouse lung by CV8 in vivo have a powerful anti-inflammatory effect on Pseudomonas aeruginosa lung infection. This rational design strategy could be used to other molecules with immunomodulatory properties used in bacterial therapy.


Asunto(s)
Interleucina-10 , Neumonía , Ratones , Humanos , Animales , Interleucina-10/genética , Pulmón , Neumonía/prevención & control , Neumonía/patología , Citocinas , Inflamación/patología , Bacterias , Pseudomonas aeruginosa
2.
Hum Reprod ; 38(11): 2187-2195, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37697661

RESUMEN

STUDY QUESTION: Is the abundance of certain biochemical compounds in human cumulus cells (CCs) related to oocyte quality? SUMMARY ANSWER: Malonate, 5-oxyproline, and erythronate were positively associated with pregnancy potential. WHAT IS KNOWN ALREADY: CCs are removed and discarded prior to ICSI, thereby constituting an interesting biological material on which to perform molecular analysis aimed to predict oocyte developmental competence. Mitochondrial DNA content and transcriptional analyses in CC have been shown to provide a poor predictive value of oocyte competence, but the untargeted analysis of biochemical compounds (metabolomics) has been unexplored. STUDY DESIGN, SIZE, DURATION: CCs were obtained from three groups of cumulus-oocyte complexes (COCs) of known developmental potential: oocytes not developing to blastocyst following ICSI (Bl-); oocytes developing to blastocyst but failing to establish pregnancy following embryo transfer (P-); and oocytes developing to blastocyst able to establish a pregnancy (P+). Metabolomics analyses were performed on 12 samples per group, each sample comprising the CC recovered from a single COC. PARTICIPANTS/MATERIALS, SETTING, METHODS: Human CC samples were obtained from IVF treatments. Only unfrozen oocytes and embryos not submitted to preimplantation genetic testing were included in the analysis. Metabolomics analysis was performed by ultra-high performance liquid chromatography-tandem mass spectroscopy. MAIN RESULTS AND THE ROLE OF CHANCE: The analysis identified 98 compounds, five of which were differentially abundant (P < 0.05) between groups: asparagine, proline, and malonate were less abundant in P- compared to Bl-, malonate and 5-oxoproline were less abundant in P- group compared to P+, and erythronate was less abundant in Bl- group compared to P+. No significant association between the abundance of the compounds identified and donor age or BMI was noted. LIMITATIONS, REASONS FOR CAUTION: Data dispersion and the lack of coherence between developmental groups preclude the direct use of metabolic markers in clinical practice, where the uterine environment plays a major role in pregnancy outcome. The abundance of other compounds not detected by the analysis may be associated with oocyte competence. As donors were lean (only two with BMI > 30 kg/m2) and young (<34 years old), a possible effect of obesity or advanced age on the CC metabolome could not be determined. WIDER IMPLICATIONS OF THE FINDINGS: The abundance of malonate, 5-oxyproline, and erythronate in CC was significantly higher in COCs ultimately establishing pregnancy, providing clues on the pathways required for oocyte competence. The untargeted analysis uncovered the presence of compounds that were not expected in CC, such as ß-citrylglutamate and the neurotransmitter N-acetyl-aspartyl-glutamate, which may play roles in chromatin remodeling and signaling, respectively. STUDY FUNDING/COMPETING INTEREST(S): Research was supported by the Industrial Doctorate Project IND2017/BIO-7748 funded by Madrid Region Government. The authors declare no competing interest. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Células del Cúmulo , Oocitos , Femenino , Humanos , Embarazo , Adulto , Células del Cúmulo/metabolismo , Hidroxiprolina/metabolismo , Hidroxiprolina/farmacología , Oocitos/metabolismo , Oogénesis , Malonatos/metabolismo , Malonatos/farmacología
3.
J Exp Bot ; 74(19): 6069-6088, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37429579

RESUMEN

The plant immune system is constituted of two functionally interdependent branches that provide the plant with an effective defense against microbial pathogens. They can be considered separate since one detects extracellular pathogen-associated molecular patterns by means of receptors on the plant surface, while the other detects pathogen-secreted virulence effectors via intracellular receptors. Plant defense depending on both branches can be effectively suppressed by host-adapted microbial pathogens. In this review we focus on bacterially driven suppression of the latter, known as effector-triggered immunity (ETI) and dependent on diverse NOD-like receptors (NLRs). We examine how some effectors secreted by pathogenic bacteria carrying type III secretion systems can be subject to specific NLR-mediated detection, which can be evaded by the action of additional co-secreted effectors (suppressors), implying that virulence depends on the coordinated action of the whole repertoire of effectors of any given bacterium and their complex epistatic interactions within the plant. We consider how ETI activation can be avoided by using suppressors to directly alter compromised co-secreted effectors, modify plant defense-associated proteins, or occasionally both. We also comment on the potential assembly within the plant cell of multi-protein complexes comprising both bacterial effectors and defense protein targets.


Asunto(s)
Bacterias , Plantas , Plantas/metabolismo , Bacterias/metabolismo , Proteínas de Plantas/metabolismo , Proteínas NLR , Inmunidad de la Planta , Enfermedades de las Plantas/microbiología , Proteínas Bacterianas/metabolismo
4.
Vet Res ; 54(1): 91, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845774

RESUMEN

The microbiota in humans and animals play crucial roles in defense against pathogens and offer a promising natural source for immunomodulatory products. However, the development of physiologically relevant model systems and protocols for testing such products remains challenging. In this study, we present an experimental condition where various natural products derived from the registered lactic acid bacteria Ligilactobacillus salivarius CECT 9609, known for their immunomodulatory activity, were tested. These products included live and inactivated bacteria, as well as fermentation products at different concentrations and culture times. Using our established model system, we observed no morphological changes in the airway epithelium upon exposure to Pasteurella multocida, a common respiratory pathogen. However, early molecular changes associated with the innate immune response were detected through transcript analysis. By employing diverse methodologies ranging from microscopy to next-generation sequencing (NGS), we characterized the interaction of these natural products with the airway epithelium and their potential beneficial effects in the presence of P. multocida infection. In particular, our discovery highlights that among all Ligilactobacillus salivarius CECT 9609 products tested, only inactivated cells preserve the conformation and morphology of respiratory epithelial cells, while also reversing or altering the natural immune responses triggered by Pasteurella multocida. These findings lay the groundwork for further exploration into the protective role of these bacteria and their derivatives.


Asunto(s)
Productos Biológicos , Ligilactobacillus salivarius , Infecciones por Pasteurella , Pasteurella multocida , Humanos , Animales , Inmunidad Innata , Células Epiteliales , Productos Biológicos/farmacología , Infecciones por Pasteurella/microbiología , Infecciones por Pasteurella/veterinaria
5.
Proc Natl Acad Sci U S A ; 116(49): 24568-24573, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31732673

RESUMEN

RNA-protein interactions are crucial for such key biological processes as regulation of transcription, splicing, translation, and gene silencing, among many others. Knowing where an RNA molecule interacts with a target protein and/or engineering an RNA molecule to specifically bind to a protein could allow for rational interference with these cellular processes and the design of novel therapies. Here we present a robust RNA-protein fragment pair-based method, termed RnaX, to predict RNA-binding sites. This methodology, which is integrated into the ModelX tool suite (http://modelx.crg.es), takes advantage of the structural information present in all released RNA-protein complexes. This information is used to create an exhaustive database for docking and a statistical forcefield for fast discrimination of true backbone-compatible interactions. RnaX, together with the protein design forcefield FoldX, enables us to predict RNA-protein interfaces and, when sufficient crystallographic information is available, to reengineer the interface at the sequence-specificity level by mimicking those conformational changes that occur on protein and RNA mutagenesis. These results, obtained at just a fraction of the computational cost of methods that simulate conformational dynamics, open up perspectives for the engineering of RNA-protein interfaces.


Asunto(s)
Simulación del Acoplamiento Molecular/métodos , Proteínas/metabolismo , ARN/metabolismo , Algoritmos , Sitios de Unión , Biología Computacional/métodos , Conformación Proteica , Proteínas/química , ARN/química , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Curva ROC , Programas Informáticos
6.
J Cell Physiol ; 236(2): 1054-1067, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32617972

RESUMEN

Mesenchymal stem cells (MSCs) have a great potential in regenerative medicine because of their multipotential and immunoregulatory capacities, while in early pregnancy they could participate in the immunotolerance of the mother towards the embryo. Peripheral blood constitutes an accessible source of MSCs. We successfully isolated peripheral blood MSC (pbMSCs) lines, with or without previous bone marrow mobilization. All pbMSCs lines obtained in both conditions presented classical MSC markers and properties, alkaline phosphatase activity and multipotent capacity to differentiate among adipogenic, osteogenic or chondrogenic lineages, and suppressed the proliferation of T cells. pbMSCs showed migratory capacity without cytokine stimulation while increasing their migration rate in the presence of inflammatory or embryo implantation stimuli. Interestingly, in contrast to MSCs derived from endometrial tissue, three pbMSCs lines also showed increased migration towards the IFN-τ implantation cytokine. Moreover, the secretome produced by an early implantation stage embryonic trophectoderm cell line showed a chemoattractant effect in pbMSCs. Our results suggest that circulating MSCs are present in the peripheral blood under healthy conditions. The fact that both the inflammation and implantation signals induced pbMSCs chemotaxis highlights MSC heterogeneity and suggests that their migratory capacity may differ according to their tissue of origin and would suggest the possible active recruitment of MSCs from bone marrow during pregnancy to repress the immune response to prevent the embryo rejection by the maternal organism.


Asunto(s)
Quimiotaxis/genética , Inflamación/genética , Células Madre Mesenquimatosas/metabolismo , Medicina Regenerativa , Adipogénesis/genética , Animales , Bovinos , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Condrogénesis/genética , Implantación del Embrión/genética , Femenino , Humanos , Inflamación/patología , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Relaciones Materno-Fetales/fisiología , Células Madre Mesenquimatosas/fisiología , Osteogénesis/genética
7.
Cancer Metastasis Rev ; 39(1): 55-68, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32026204

RESUMEN

Over the past few decades, the diagnosis and management of children with various malignancies have improved tremendously. As a result, there are an increasing number of children who are long-term cancer survivors. With improved survival, however, has come an increased risk of treatment-related cardiovascular complications that can appear decades after treatment. These problems are serious enough that all caregivers of childhood cancer survivors, including oncologists, cardiologists, and other health care personnel, must pay close attention to the short- and long-term effects of chemotherapy and radiotherapy on these children. This review discusses the effects of treatment-related cardiovascular complications from anthracyclines and radiotherapy and the methods for preventing, screening, and treating these complications.


Asunto(s)
Supervivientes de Cáncer , Enfermedades Cardiovasculares/etiología , Neoplasias/complicaciones , Antraciclinas/administración & dosificación , Antraciclinas/efectos adversos , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Enfermedades Cardiovasculares/inducido químicamente , Niño , Humanos , Neoplasias/terapia
8.
Pharmacogenet Genomics ; 31(5): 108-115, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34096893

RESUMEN

OBJECTIVES: Cardiotoxicity is a frequent complication secondary to the use of anthracyclines for cancer chemotherapy. Evidence suggests that certain polymorphic genetic variants modify the risk for anthracycline-related cardiotoxicity. Reports documenting the impact of genetic polymorphisms on anthracycline-cardiotoxicity risk in pediatric patients with cancers from Latin American countries are scarce. The objective of this study was to evaluate associations between NCF4 rs1883112, CBR3 rs1056892 and ABCC1 rs3743527 genotype status and echocardiographic parameters indicative of anthracycline-cardiotoxicity in a group of Mexican children with acute lymphoblastic leukemia (ALL). METHODS: Sixty-seven children (2-18 years old) with ALL were treated at the State Cancer Center in Durango, Mexico. NCF4, CBR3, and ABCC1 genotypes were examined by real-time PCR. Left ventricular ejection fraction and diastolic filling ratio were examined as markers of systolic and diastolic anthracycline-toxicity. RESULTS: NCF4 rs1883112 genotype status was significantly associated with the risk of doxorubicin cardiotoxicity [odds ratio (OR) = 10.80, 95% confidence interval (CI) 1.69-68.98, P = 0.01]. There was a significant association between heterozygous CBR3 rs1056892 genotype status and anthracycline-cardiotoxicity risk (OR = 9.91, 95% CI 1.07-91.47, P = 0.04). Heterozygosis for the ABCC1 rs3743527 allele was associated with protection from anthracycline-cardiotoxicity (OR = 0.30, 95% CI 0.09-0.91, P = 0.03). CONCLUSION: This pilot study suggests that selected polymorphic variants may impact the risk for anthracycline-cardiotoxicity in pediatric patients with ALL treated with a contemporary chemotherapeutic regimen in Mexico.


Asunto(s)
Cardiotoxicidad , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adolescente , Oxidorreductasas de Alcohol/genética , Cardiotoxicidad/genética , Niño , Preescolar , Doxorrubicina/efectos adversos , Humanos , NADPH Oxidasas/genética , Proyectos Piloto , Polimorfismo Genético , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Volumen Sistólico , Función Ventricular Izquierda
9.
New Phytol ; 231(3): 1138-1156, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33960430

RESUMEN

The Pseudomonas syringae type III secretion system translocates effector proteins into the host cell cytosol to suppress plant basal immunity. Effector HopZ1a suppresses local and systemic immunity triggered by pathogen-associated molecular patterns (PAMPs) and effectors, through target acetylation. HopZ1a has been shown to target several plant proteins, but none fully substantiates HopZ1a-associated immune suppression. Here, we investigate Arabidopsis thaliana mitogen-activated protein kinase kinases (MKKs) as potential targets, focusing on AtMKK7, a positive regulator of local and systemic immunity. We analyse HopZ1a interference with AtMKK7 by translocation of HopZ1a from bacteria inoculated into Arabidopsis expressing MKK7 from an inducible promoter. Reciprocal phenotypes are analysed on plants expressing a construct quenching MKK7 native expression. We analyse HopZ1a-MKK7 interaction by three independent methods, and the relevance of acetylation by in vitro kinase and in planta functional assays. We demonstrate the AtMKK7 contribution to immune signalling showing MKK7-dependent flg22-induced reactive oxygen species (ROS) burst, MAP kinas (MAPK) activation and callose deposition, plus AvrRpt2-triggered MKK7-dependent signalling. Furthermore, we demonstrate HopZ1a suppression of all MKK7-dependent responses, HopZ1a-MKK7 interaction in planta and HopZ1a acetylation of MKK7 with a lysine required for full kinase activity. We demonstrate that HopZ1a targets AtMKK7 to suppress local and systemic plant immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Bacterianas , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Pseudomonas syringae
10.
PLoS Comput Biol ; 16(12): e1008450, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33284795

RESUMEN

The coronavirus disease COVID-19 constitutes the most severe pandemic of the last decades having caused more than 1 million deaths worldwide. The SARS-CoV-2 virus recognizes the angiotensin converting enzyme 2 (ACE2) on the surface of human cells through its spike protein. It has been reported that the coronavirus can mildly infect cats, and ferrets, and perhaps dogs while not pigs, mice, chicken and ducks. Differences in viral infectivity among different species or individuals could be due to amino acid differences at key positions of the host proteins that interact with the virus, the immune response, expression levels of host proteins and translation efficiency of the viral proteins among other factors. Here, first we have addressed the importance that sequence variants of different animal species, human individuals and virus isolates have on the interaction between the RBD domain of the SARS-CoV-2 spike S protein and human angiotensin converting enzyme 2 (ACE2). Second, we have looked at viral translation efficiency by using the tRNA adaptation index. We find that integration of both interaction energy with ACE2 and translational efficiency explains animal infectivity. Humans are the top species in which SARS-CoV-2 is both efficiently translated as well as optimally interacting with ACE2. We have found some viral mutations that increase affinity for hACE and some hACE2 variants affecting ACE2 stability and virus binding. These variants suggest that different sensitivities to coronavirus infection in humans could arise in some cases from allelic variability affecting ACE2 stability and virus binding.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , COVID-19/virología , Mutagénesis , Biosíntesis de Proteínas , Glicoproteína de la Espiga del Coronavirus/genética , Alelos , Animales , Simulación por Computador , Cristalografía por Rayos X , Humanos , Sistema Inmunológico , Unión Proteica , Dominios Proteicos , Pliegue de Proteína , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteoma , SARS-CoV-2 , Especificidad de la Especie
11.
Cancer ; 126(17): 4051-4058, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32413235

RESUMEN

BACKGROUND: Anthracycline-related cardiomyopathy is a leading cause of late morbidity in childhood cancer survivors. Glutathione S-transferases (GSTs) are a class of phase II detoxification enzymes that facilitate the elimination of anthracyclines. As free-radical scavengers, GSTs could play a role in oxidative damage-induced cardiomyopathy. Associations between the GSTµ1 (GSTM1) null genotype and iron-overload-related cardiomyopathy have been reported in patients with thalassemia. METHODS: The authors sought to identify an association between the GSTM1 null genotype and anthracycline-related cardiomyopathy in childhood cancer survivors and to corroborate the association by examining GSTM1 gene expression in peripheral blood and human-induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) from survivors with and without cardiomyopathy. GSTM1 gene deletion was examined by polymerase chain reaction in 75 survivors who had clinically validated cardiomyopathy (cases) and in 92 matched survivors without cardiomyopathy (controls). Conditional logistic regression analysis adjusting for sex, age at cancer diagnosis, chest radiation, and anthracycline dose was used to assess the association between genotype and cardiomyopathy. Proprietary bead array technology and quantitative real-time polymerase chain reaction were used to measure GSTM1 expression levels in samples from 20 cases and 20 matched controls. hiPSC-CMs from childhood cancer survivors (3 with cardiomyopathy, 3 without cardiomyopathy) also were examined for GSTM1 gene expression levels. RESULTS: A significant association was observed between the risk of cardiomyopathy and the GSTM1 null genotype (odds ratio, 2.7; 95% CI, 1.3-5.9; P = .007). There was significant downregulation of GSTM1 expression in cases compared with controls (average relative expression, 0.67 ± 0.57 vs 1.33 ± 1.33, respectively; P = .049). hiPSC-CMs from patients who had cardiomyopathy revealed reduced GSTM1 expression (P = .007). CONCLUSIONS: The current findings could facilitate the identification of childhood cancer survivors who are at risk for anthracycline-related cardiomyopathy.


Asunto(s)
Antraciclinas/administración & dosificación , Cardiomiopatías/genética , Glutatión Transferasa/genética , Neoplasias/tratamiento farmacológico , Adolescente , Antraciclinas/efectos adversos , Supervivientes de Cáncer , Cardiomiopatías/sangre , Cardiomiopatías/etiología , Cardiomiopatías/patología , Niño , Preescolar , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Masculino , Neoplasias/complicaciones , Neoplasias/genética , Neoplasias/patología , Estrés Oxidativo/efectos de los fármacos
13.
Arch Virol ; 165(10): 2165-2176, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32740830

RESUMEN

The PI3K/Akt signalling pathway is a crucial signalling cascade that regulates transcription, protein translation, cell growth, proliferation, cell survival, and metabolism. During viral infection, viruses exploit a variety of cellular pathways, including the well-known PI3K/Akt signalling pathway. Conversely, cells rely on this pathway to stimulate an antiviral response. The PI3K/Akt pathway is manipulated by a number of viruses, including DNA and RNA viruses and retroviruses. The aim of this review is to provide up-to-date information about the role of the PI3K-Akt pathway in infection with members of five different families of negative-sense ssRNA viruses. This pathway is hijacked for viral entry, regulation of endocytosis, suppression of premature apoptosis, viral protein expression, and replication. Although less common, the PI3K/Akt pathway can be downregulated as an immunomodulatory strategy or as a mechanism for inducing autophagy. Moreover, the cell activates this pathway as an antiviral strategy for interferon and cytokine production, among other strategies. Here, we present new data concerning the role of this pathway in infection with the paramyxovirus Newcastle disease virus (NDV). Our data seem to indicate that NDV uses the PI3K/Akt pathway to delay cell death and increase cell survival as a means of improving its replication. The interference of negative-sense ssRNA viruses with this essential pathway might have implications for the development of antiviral therapies.


Asunto(s)
Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Fosfatidilinositol 3-Quinasa/genética , Proteínas Proto-Oncogénicas c-akt/genética , Infecciones por Virus ARN/genética , Apoptosis/genética , Autofagia/genética , Autofagia/inmunología , Citocinas/genética , Citocinas/inmunología , Endocitosis/genética , Endocitosis/inmunología , Filoviridae/genética , Filoviridae/metabolismo , Filoviridae/patogenicidad , Interacciones Huésped-Patógeno/inmunología , Interferones/genética , Interferones/inmunología , Orthomyxoviridae/genética , Orthomyxoviridae/metabolismo , Orthomyxoviridae/patogenicidad , Paramyxoviridae/genética , Paramyxoviridae/metabolismo , Paramyxoviridae/patogenicidad , Fosfatidilinositol 3-Quinasa/inmunología , Pneumovirinae/genética , Pneumovirinae/metabolismo , Pneumovirinae/patogenicidad , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-akt/inmunología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología , Rhabdoviridae/genética , Rhabdoviridae/metabolismo , Rhabdoviridae/patogenicidad , Transducción de Señal , Proteínas Virales/genética , Proteínas Virales/inmunología , Internalización del Virus , Replicación Viral
14.
Nucleic Acids Res ; 46(8): 3852-3863, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29608705

RESUMEN

The speed at which new genomes are being sequenced highlights the need for genome-wide methods capable of predicting protein-DNA interactions. Here, we present PADA1, a generic algorithm that accurately models structural complexes and predicts the DNA-binding regions of resolved protein structures. PADA1 relies on a library of protein and double-stranded DNA fragment pairs obtained from a training set of 2103 DNA-protein complexes. It includes a fast statistical force field computed from atom-atom distances, to evaluate and filter the 3D docking models. Using published benchmark validation sets and 212 DNA-protein structures published after 2016 we predicted the DNA-binding regions with an RMSD of <1.8 Å per residue in >95% of the cases. We show that the quality of the docked templates is compatible with FoldX protein design tool suite to identify the crystallized DNA molecule sequence as the most energetically favorable in 80% of the cases. We highlighted the biological potential of PADA1 by reconstituting DNA and protein conformational changes upon protein mutagenesis of a meganuclease and its variants, and by predicting DNA-binding regions and nucleotide sequences in proteins crystallized without DNA. These results opens up new perspectives for the engineering of DNA-protein interfaces.


Asunto(s)
Algoritmos , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/química , ADN/metabolismo , Sitios de Unión , Biología Computacional/métodos , Simulación por Computador , Proteínas de Unión al ADN/genética , Bases de Datos de Ácidos Nucleicos/estadística & datos numéricos , Bases de Datos de Proteínas/estadística & datos numéricos , Bases del Conocimiento , Modelos Moleculares , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas , Programas Informáticos
15.
Exp Mol Pathol ; 110: 104268, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31201803

RESUMEN

Down syndrome (trisomy 21) is characterized by genome-wide imbalances that result in a range of phenotypic manifestations. Altered expression of DYRK1A in the trisomic context has been linked to some Down syndrome phenotypes. DYRK1A regulates the splicing of cardiac troponin (TNNT2) through a pathway mediated by the master splicing factor SRSF6. Here, we documented the expression of the DYRK1A-SRSF6-TNNT2 pathway in a collection of myocardial samples from persons with and without Down syndrome. Results suggest that "gene dosage effect" may drive the expression of DYRK1A mRNA but has no effect on DYRK1A protein levels in trisomic myocardium. The levels of phosphorylated DYRK1A-Tyr321 tended to be higher (~35%) in myocardial samples from donors with Down syndrome. The levels of phosphorylated SRSF6 were 2.6-fold higher in trisomic myocardium. In line, the expression of fetal TNNT2 variants was higher in myocardial tissue with trisomy 21. These data provide a representative picture on the extent of inter-individual variation in myocardial DYRK1A-SRSF6-TNNT2 expression in the context of Down syndrome.


Asunto(s)
Síndrome de Down , Corazón Fetal/metabolismo , Miocardio/metabolismo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Factores de Empalme Serina-Arginina/genética , Troponina T/genética , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Lactante , Masculino , Persona de Mediana Edad , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Transducción de Señal/genética , Troponina T/metabolismo , Adulto Joven , Quinasas DyrK
16.
Pharm Res ; 35(1): 15, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29302759

RESUMEN

PURPOSE: FCGRT encodes the alpha-chain component of the neonatal Fc receptor (FcRn). FcRn is critical for the trafficking of endogenous and exogenous IgG molecules and albumin in various tissues. Few regulators of FcRn expression have been identified. We investigated the epigenetic regulation of FcRn by two microRNAs (hsa-miR-3181 and hsa-miR-3136-3p) acting on FCGRT. METHODS: The binding of candidate microRNAs to the 3'-untranslated region of FCGRT was evaluated using luciferase reporter constructs in CHO cells. The effect of microRNAs on FCGRT mRNA and FcRn protein expression was evaluated using specific microRNA mimics and inhibitor transfections in A549, HEK293 and HepG2 cells. RESULTS: Hsa-miR-3181 mimic reduced luciferase reporter activity by 70.1% (10 nM, P < 0.0001). In A549, HEK293 and HepG2 cells, hsa-miR-3181 decreased FCGRT mRNA expression (48.6%, 51.3% and 43.5% respectively, 25 nM, P < 0.05). The hsa-miR-3181 mimic decreased the expression of FcRn protein by 40% after 48 h (25 nM, P < 0.001). The mature form of hsa-miR-3181 was detected in samples of human liver. CONCLUSIONS: These data suggest that hsa-miR-3181 is an epigenetic regulator of FCGRT expression. The identification of this regulator of FCGRT may provide insights into a potential determinant of interindividual variability in FcRn expression.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/biosíntesis , MicroARNs/genética , Receptores Fc/biosíntesis , Regiones no Traducidas 3' , Células A549 , Animales , Células CHO , Cricetinae , Cricetulus , Epigénesis Genética , Expresión Génica , Células HEK293 , Células Hep G2 , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Hígado/metabolismo , Luciferasas , ARN Mensajero/genética , Receptores Fc/genética , Transfección/métodos
17.
J Pathol ; 242(1): 24-38, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28035683

RESUMEN

Although p53 protein aggregates have been observed in cancer cell lines and tumour tissue, their impact in cancer remains largely unknown. Here, we extensively screened for p53 aggregation phenotypes in tumour biopsies, and identified nuclear inclusion bodies (nIBs) of transcriptionally inactive mutant or wild-type p53 as the most frequent aggregation-like phenotype across six different cancer types. p53-positive nIBs co-stained with nuclear aggregation markers, and shared molecular hallmarks of nIBs commonly found in neurodegenerative disorders. In cell culture, tumour-associated stress was a strong inducer of p53 aggregation and nIB formation. This was most prominent for mutant p53, but could also be observed in wild-type p53 cell lines, for which nIB formation correlated with the loss of p53's transcriptional activity. Importantly, protein aggregation also fuelled the dysregulation of the proteostasis network in the tumour cell by inducing a hyperactivated, oncogenic heat-shock response, to which tumours are commonly addicted, and by overloading the proteasomal degradation system, an observation that was most pronounced for structurally destabilized mutant p53. Patients showing tumours with p53-positive nIBs suffered from a poor clinical outcome, similar to those with loss of p53 expression, and tumour biopsies showed a differential proteostatic expression profile associated with p53-positive nIBs. p53-positive nIBs therefore highlight a malignant state of the tumour that results from the interplay between (1) the functional inactivation of p53 through mutation and/or aggregation, and (2) microenvironmental stress, a combination that catalyses proteostatic dysregulation. This study highlights several unexpected clinical, biological and therapeutically unexplored parallels between cancer and neurodegeneration. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Neoplasias del Colon/genética , Glioblastoma/genética , Cuerpos de Inclusión Intranucleares/metabolismo , Agregación Patológica de Proteínas/genética , Deficiencias en la Proteostasis/genética , Proteína p53 Supresora de Tumor/genética , Biopsia , Línea Celular Tumoral , Neoplasias del Colon/complicaciones , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Citoplasma/metabolismo , Glioblastoma/complicaciones , Glioblastoma/metabolismo , Glioblastoma/patología , Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Humanos , Estimación de Kaplan-Meier , Mutación , Agregación Patológica de Proteínas/etiología , Agregación Patológica de Proteínas/metabolismo , Deficiencias en la Proteostasis/etiología , Deficiencias en la Proteostasis/metabolismo , Receptores sigma/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
18.
Biopharm Drug Dispos ; 39(6): 315-318, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29851133

RESUMEN

Loxoprofen is an anti-inflammatory drug that requires bioactivation into the trans-OH metabolite to exert pharmacological activity. Evidence suggests that carbonyl reductase 1 (CBR1) is important during the bioactivation of loxoprofen. This study examined the impact of the functional single nucleotide polymorphism CBR1 rs9024 on the bioactivation of loxoprofen in a collection of human liver samples. The synthesis ratios of trans-OH loxoprofen/cis-OH loxoprofen were 33% higher in liver cytosols from donors homozygous for the CBR1 rs9024 G allele in comparison with the ratios in samples from donors with heterozygous GA genotypes. Complementary studies examined the impact of CBR1 rs9024 on the bioactivation of loxoprofen in lymphoblastoid cell lines. CBR1 rs9024 genotype status impacts the synthesis of the bioactive trans-OH metabolite of loxoprofen in human liver.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Genotipo , Hígado/metabolismo , Fenilpropionatos/metabolismo , Polimorfismo de Nucleótido Simple , Oxidorreductasas de Alcohol/genética , Antiinflamatorios no Esteroideos/metabolismo , Línea Celular Tumoral , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
Hum Mutat ; 38(1): 48-54, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27594409

RESUMEN

Individuals with Down syndrome (DS, trisomy 21) exhibit a pro-oxidative cellular environment as well as mitochondrial dysfunction. Increased oxidative stress may damage the mitochondrial DNA (mtDNA). The coexistence of mtDNA variants in a cell or tissue (i.e., heteroplasmy) may contribute to mitochondrial dysfunction. Given the evidence on mitochondrial dysfunction and the relatively high incidence of multiorganic disorders associated with DS, we hypothesized that cardiac tissue from subjects with DS may exhibit higher frequencies of mtDNA variants in comparison to cardiac tissue from donors without DS. This study documents the analysis of mtDNA variants in heart tissue samples from donors with (n = 12) and without DS (n = 33) using massively parallel sequencing. Contrary to the original hypothesis, the study's findings suggest that the cardiac mitochondrial genomes from individuals with and without DS exhibit many similarities in terms of (1) total number of mtDNA variants per sample, (2) the frequency of mtDNA variants, (3) the type of mtDNA variants, and (4) the patterns of distribution of mtDNA variants. In both groups of samples, the mtDNA control region showed significantly more heteroplasmic variants in comparison to the number of variants in protein- and RNA-coding genes (P < 1.00×10-4 , ANOVA).


Asunto(s)
Síndrome de Down/genética , Variación Genética , Genoma Mitocondrial , Mitocondrias Cardíacas/genética , Adulto , Anciano , Estudios de Casos y Controles , Biología Computacional/métodos , ADN Mitocondrial/genética , Síndrome de Down/diagnóstico , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación INDEL , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Adulto Joven
20.
Rheumatology (Oxford) ; 56(suppl_1): i46-i54, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-27744359

RESUMEN

SLE is a chronic autoimmune disease involving multiple systems. Patients with SLE are highly susceptible to infections due to the combined effects of their immunosuppressive therapy and the abnormalities of the immune system that the disease itself causes, which can increase mortality in these patients. The differentiation of SLE activity and infection in a febrile patient with SLE is extremely difficult. Activity indexes are useful to identify patients with lupus flares but some clinical and biological abnormalities may, however, make it difficult to differentiate flares from infection. Several biological markers are now recognized as potential tools to establish the difference between SLE activity and infection, including CRP and procalcitonin. It is possible, however, that the use of only one biomarker is not sufficient to confirm or discard infection. This means that new scores, which include different biomarkers, might represent a better solution for differentiating these two clinical pictures. This review article describes several markers that are currently used, or have the potential, to differentiate infection from SLE flares.


Asunto(s)
Infecciones/diagnóstico , Lupus Eritematoso Sistémico/diagnóstico , 2',5'-Oligoadenilato Sintetasa/metabolismo , Biomarcadores/metabolismo , Proteína C-Reactiva/metabolismo , Calcitonina/metabolismo , Diagnóstico Diferencial , Progresión de la Enfermedad , Proteína HMGB1/metabolismo , Humanos , Infecciones/metabolismo , Recuento de Leucocitos , Lupus Eritematoso Sistémico/metabolismo , Lupus Eritematoso Sistémico/fisiopatología , Lectina de Unión a Manosa/metabolismo , Glicoproteínas de Membrana/metabolismo , Neutrófilos , Receptores de IgG/metabolismo , Receptores Inmunológicos/metabolismo , Receptor Activador Expresado en Células Mieloides 1 , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA