Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 126(19): 197401, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34047608

RESUMEN

The interplay between strong light-matter interactions and charge doping represents an important frontier in the pursuit of exotic many-body physics and optoelectronics. Here, we consider a simplified model of a two-dimensional semiconductor embedded in a microcavity, where the interactions between electrons and holes are strongly screened, allowing us to develop a diagrammatic formalism for this system with an analytic expression for the exciton-polariton propagator. We apply this to the scattering of spin-polarized polaritons and electrons, and show that this is strongly enhanced compared with exciton-electron interactions. As we argue, this counterintuitive result is a consequence of the shift of the collision energy due to the strong light-matter coupling, and hence this is a generic feature that applies also for more realistic electron-hole and electron-electron interactions. We furthermore demonstrate that the lack of Galilean invariance inherent in the light-matter coupled system can lead to a narrow resonancelike feature for polariton-electron interactions close to the polariton inflection point. Our results are potentially important for realizing tunable light-mediated interactions between charged particles.

2.
Nat Commun ; 12(1): 689, 2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514702

RESUMEN

Optical activity, also called circular birefringence, is known for two hundred years, but its applications for topological photonics remain unexplored. Unlike the Faraday effect, the optical activity provokes rotation of the linear polarization of light without magnetic effects, thus preserving the time-reversal symmetry. In this work, we report a direct measurement of the Berry curvature and quantum metric of the photonic modes of a planar cavity, containing a birefringent organic microcrystal (perylene) and exhibiting emergent optical activity. This experiment, performed at room temperature and at visible wavelength, establishes the potential of organic materials for implementing non-magnetic and low-cost topological photonic devices.

3.
Nat Commun ; 11(1): 429, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31969565

RESUMEN

Superfluidity, first discovered in liquid 4He, is closely related to Bose-Einstein condensation (BEC) phenomenon. However, even at zero temperature, a fraction of the quantum liquid is excited out of the condensate into higher momentum states via interaction-induced fluctuations-the phenomenon of quantum depletion. Quantum depletion of atomic BECs in thermal equilibrium is well understood theoretically but is difficult to measure. This measurement is even more challenging in driven-dissipative exciton-polariton condensates, since their non-equilibrium nature is predicted to suppress quantum depletion. Here, we observe quantum depletion of a high-density exciton-polariton condensate by detecting the spectral branch of elementary excitations populated by this process. Analysis of this excitation branch shows that quantum depletion of exciton-polariton condensates can closely follow or strongly deviate from the equilibrium Bogoliubov theory, depending on the exciton fraction in an exciton polariton. Our results reveal beyond mean-field effects of exciton-polariton interactions and call for a deeper understanding of the relationship between equilibrium and non-equilibrium BECs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA