Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36232550

RESUMEN

Oxytocin (OXT) analogues have been designed to overcome the limitation of the short half-life of the native OXT peptide. Here, we tested ASK2131 on obesity related outcomes in diet-induced obese (DIO) Sprague Dawley rats. In vitro function assays were conducted. The effects of daily subcutaneous injections of ASK2131 vs. OXT and pair-feeding were assessed on food intake and body weight in vivo. ASK2131 is a longer-lasting OXT analog with improved pharmacokinetics compared to OXT (T1/2: 2.3 vs. 0.12 h). In chronic 22-day administration, ASK2131 was administered at 50 nmol/kg, while OXT doses were titrated up to 600 nmol/kg because OXT appeared to be less effective at reducing energy intake relative to ASK2131 at equimolar doses. After 22 days, vehicle-treated animals gained 4.5% body weight, OXT rats maintained their body weight, while those treated with ASK2131 declined in weight continuously over the 22-day period, leading to a 6.6 ± 1.3% reduction (mean ± standard error) compared to baseline. Compared to their pair-fed counterparts, ASK2131-treated rats showed a more pronounced reduction in body weight through most of the study. In summary, ASK2131 is a promising OXT-based therapeutic, with extended in vivo stability and improved potency leading to a profound reduction in body weight partly explained by reduced food intake.


Asunto(s)
Ingestión de Alimentos , Oxitocina , Animales , Peso Corporal , Ingestión de Energía , Obesidad/tratamiento farmacológico , Obesidad/etiología , Oxitocina/uso terapéutico , Ratas , Ratas Sprague-Dawley
2.
Am J Physiol Regul Integr Comp Physiol ; 320(4): R471-R487, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33470901

RESUMEN

Previous studies indicate that oxytocin (OT) administration reduces body weight in high-fat diet (HFD)-induced obese (DIO) rodents through both reductions in food intake and increases in energy expenditure. We recently demonstrated that chronic hindbrain [fourth ventricular (4V)] infusions of OT evoke weight loss in DIO rats. Based on these findings, we hypothesized that chronic 4V OT would elicit weight loss in DIO mice. We assessed the effects of 4V infusions of OT (16 nmol/day) or vehicle over 28 days on body weight, food intake, and body composition. OT reduced body weight by approximately 4.5% ± 1.4% in DIO mice relative to OT pretreatment body weight (P < 0.05). These effects were associated with reduced adiposity and adipocyte size [inguinal white adipose tissue (IWAT)] (P < 0.05) and attributed, in part, to reduced energy intake (P < 0.05) at a dose that did not increase kaolin intake (P = NS). OT tended to increase uncoupling protein-1 expression in IWAT (0.05 < P < 0.1) suggesting that OT stimulates browning of WAT. To assess OT-elicited changes in brown adipose tissue (BAT) thermogenesis, we examined the effects of 4V OT on interscapular BAT temperature (TIBAT). 4V OT (1 µg) elevated TIBAT at 0.75 (P = 0.08), 1, and 1.25 h (P < 0.05) postinjection; a higher dose (5 µg) elevated TIBAT at 0.75-, 1-, 1.25-, 1.5-, 1.75- (P < 0.05), and 2-h (0.05 < P < 0.1) postinjection. Together, these findings support the hypothesis that chronic hindbrain OT treatment evokes sustained weight loss in DIO mice by reducing energy intake and increasing BAT thermogenesis at a dose that is not associated with evidence of visceral illness.


Asunto(s)
Fármacos Antiobesidad/administración & dosificación , Dieta Alta en Grasa , Obesidad/tratamiento farmacológico , Oxitocina/administración & dosificación , Rombencéfalo/efectos de los fármacos , Pérdida de Peso/efectos de los fármacos , Adipocitos Marrones/efectos de los fármacos , Adipocitos Marrones/metabolismo , Adipocitos Marrones/patología , Adipocitos Blancos/efectos de los fármacos , Adipocitos Blancos/metabolismo , Adipocitos Blancos/patología , Adiposidad/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Energía/efectos de los fármacos , Infusiones Intraventriculares , Leptina/sangre , Masculino , Ratones Endogámicos C57BL , Obesidad/metabolismo , Obesidad/patología , Obesidad/fisiopatología , Rombencéfalo/fisiopatología , Termogénesis/efectos de los fármacos , Proteína Desacopladora 1/metabolismo
3.
Am J Physiol Regul Integr Comp Physiol ; 313(4): R357-R371, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28747407

RESUMEN

Oxytocin (OT) administration elicits weight loss in diet-induced obese (DIO) rodents, nonhuman primates, and humans by reducing energy intake and increasing energy expenditure. Although the neurocircuitry underlying these effects remains uncertain, OT neurons in the paraventricular nucleus are positioned to control both energy intake and sympathetic nervous system outflow to interscapular brown adipose tissue (BAT) through projections to the hindbrain nucleus of the solitary tract and spinal cord. The current work was undertaken to examine whether central OT increases BAT thermogenesis, whether this effect involves hindbrain OT receptors (OTRs), and whether such effects are associated with sustained weight loss following chronic administration. To assess OT-elicited changes in BAT thermogenesis, we measured the effects of intracerebroventricular administration of OT on interscapular BAT temperature in rats and mice. Because fourth ventricular (4V) infusion targets hindbrain OTRs, whereas third ventricular (3V) administration targets both forebrain and hindbrain OTRs, we compared responses to OT following chronic 3V infusion in DIO rats and mice and chronic 4V infusion in DIO rats. We report that chronic 4V infusion of OT into two distinct rat models recapitulates the effects of 3V OT to ameliorate DIO by reducing fat mass. While reduced food intake contributes to this effect, our finding that 4V OT also increases BAT thermogenesis suggests that increased energy expenditure may contribute as well. Collectively, these findings support the hypothesis that, in DIO rats, OT action in the hindbrain evokes sustained weight loss by reducing energy intake and increasing BAT thermogenesis.


Asunto(s)
Tejido Adiposo Pardo/fisiopatología , Obesidad/tratamiento farmacológico , Obesidad/fisiopatología , Oxitocina/farmacología , Rombencéfalo/fisiopatología , Termogénesis/efectos de los fármacos , Pérdida de Peso/efectos de los fármacos , Tejido Adiposo Pardo/efectos de los fármacos , Animales , Depresores del Apetito/farmacología , Dieta Alta en Grasa/efectos adversos , Relación Dosis-Respuesta a Droga , Infusiones Intraventriculares , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Rombencéfalo/efectos de los fármacos , Especificidad de la Especie , Resultado del Tratamiento
4.
Am J Physiol Regul Integr Comp Physiol ; 310(7): R640-58, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26791828

RESUMEN

Based largely on a number of short-term administration studies, growing evidence suggests that central oxytocin is important in the regulation of energy balance. The goal of the current work is to determine whether long-term third ventricular (3V) infusion of oxytocin into the central nervous system (CNS) is effective for obesity prevention and/or treatment in rat models. We found that chronic 3V oxytocin infusion between 21 and 26 days by osmotic minipumps both reduced weight gain associated with the progression of high-fat diet (HFD)-induced obesity and elicited a sustained reduction of fat mass with no decrease of lean mass in rats with established diet-induced obesity. We further demonstrated that these chronic oxytocin effects result from 1) maintenance of energy expenditure at preintervention levels despite ongoing weight loss, 2) a reduction in respiratory quotient, consistent with increased fat oxidation, and 3) an enhanced satiety response to cholecystokinin-8 and associated decrease of meal size. These weight-reducing effects persisted for approximately 10 days after termination of 3V oxytocin administration and occurred independently of whether sucrose was added to the HFD. We conclude that long-term 3V administration of oxytocin to rats can both prevent and treat diet-induced obesity.


Asunto(s)
Adiposidad/fisiología , Encéfalo/fisiología , Dieta Alta en Grasa/métodos , Metabolismo de los Lípidos/fisiología , Oxitocina/farmacocinética , Respuesta de Saciedad/fisiología , Animales , Apetito/fisiología , Ansia/fisiología , Grasas de la Dieta/metabolismo , Infusiones Intraventriculares , Masculino , Obesidad/fisiopatología , Obesidad/prevención & control , Oxitocina/administración & dosificación , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Pérdida de Peso/fisiología
5.
Appl Microbiol Biotechnol ; 100(7): 3219-31, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26743658

RESUMEN

Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the "Custer effect". Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Dekkera/genética , Etanol/metabolismo , Proteínas Fúngicas/metabolismo , Glucosa/metabolismo , Aerobiosis , Alcohol Deshidrogenasa/genética , Anaerobiosis , Biocombustibles , Clonación Molecular , Dekkera/enzimología , Fermentación , Proteínas Fúngicas/genética , Expresión Génica , Ingeniería Genética , Plásmidos/química , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Am J Physiol Regul Integr Comp Physiol ; 308(5): R431-8, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25540103

RESUMEN

Despite compelling evidence that oxytocin (OT) is effective in reducing body weight (BW) in diet-induced obese (DIO) rodents, studies of the effects of OT in humans and rhesus monkeys have primarily focused on noningestive behaviors. The goal of this study was to translate findings in DIO rodents to a preclinical translational model of DIO. We tested the hypothesis that increased OT signaling would reduce BW in DIO rhesus monkeys by inhibiting food intake and increasing energy expenditure (EE). Male DIO rhesus monkeys from the California National Primate Research Center were adapted to a 12-h fast and maintained on chow and a daily 15% fructose-sweetened beverage. Monkeys received 2× daily subcutaneous vehicle injections over 1 wk. We subsequently identified doses of OT (0.2 and 0.4 mg/kg) that reduced food intake and BW in the absence of nausea or diarrhea. Chronic administration of OT for 4 wk (0.2 mg/kg for 2 wk; 0.4 mg/kg for 2 wk) reduced BW relative to vehicle by 3.3 ± 0.4% (≈0.6 kg; P < 0.05). Moreover, the low dose of OT suppressed 12-h chow intake by 26 ± 7% (P < 0.05). The higher dose of OT reduced 12-h chow intake by 27 ± 5% (P < 0.05) and 8-h fructose-sweetened beverage intake by 18 ± 8% (P < 0.05). OT increased EE during the dark cycle by 14 ± 3% (P < 0.05) and was associated with elevations of free fatty acids and glycerol and reductions in triglycerides suggesting increased lipolysis. Together, these data suggest that OT reduces BW in DIO rhesus monkeys through decreased food intake as well as increased EE and lipolysis.


Asunto(s)
Fármacos Antiobesidad/administración & dosificación , Carbohidratos de la Dieta , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Fructosa , Obesidad/tratamiento farmacológico , Oxitocina/administración & dosificación , Pérdida de Peso/efectos de los fármacos , Animales , Depresores del Apetito/administración & dosificación , Biomarcadores/sangre , Modelos Animales de Enfermedad , Esquema de Medicación , Inyecciones Subcutáneas , Lípidos/sangre , Lipólisis/efectos de los fármacos , Macaca mulatta , Masculino , Obesidad/sangre , Obesidad/fisiopatología , Obesidad/psicología , Factores de Tiempo
7.
bioRxiv ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38854021

RESUMEN

Previous studies indicate that CNS administration of oxytocin (OT) reduces body weight in high fat diet-induced obese (DIO) rodents by reducing food intake and increasing energy expenditure (EE). We recently demonstrated that hindbrain (fourth ventricular [4V]) administration of OT elicits weight loss and elevates interscapular brown adipose tissue temperature (T IBAT , a surrogate measure of increased EE) in DIO mice. What remains unclear is whether OT-elicited weight loss requires increased sympathetic nervous system (SNS) outflow to IBAT. We hypothesized that OT-induced stimulation of SNS outflow to IBAT contributes to its ability to activate BAT and elicit weight loss in DIO mice. To test this hypothesis, we determined the effect of disrupting SNS activation of IBAT on the ability of 4V OT administration to increase T IBAT and elicit weight loss in DIO mice. We first determined whether bilateral surgical SNS denervation to IBAT was successful as noted by ≥ 60% reduction in IBAT norepinephrine (NE) content in DIO mice. NE content was selectively reduced in IBAT at 1-, 6- and 7-weeks post-denervation by 95.9±2.0, 77.4±12.7 and 93.6±4.6% ( P <0.05), respectively and was unchanged in inguinal white adipose tissue, pancreas or liver. We subsequently measured the effects of acute 4V OT (1, 5 µg ≈ 0.99, 4.96 nmol) on T IBAT in DIO mice following sham or bilateral surgical SNS denervation to IBAT. We found that the high dose of 4V OT (5 µg ≈ 4.96 nmol) elevated T IBAT similarly in sham mice as in denervated mice. We subsequently measured the effects of chronic 4V OT (16 nmol/day over 29 days) or vehicle infusions on body weight, adiposity and food intake in DIO mice following sham or bilateral surgical denervation of IBAT. Chronic 4V OT reduced body weight by 5.7±2.23% and 6.6±1.4% in sham and denervated mice ( P <0.05), respectively, and this effect was similar between groups ( P =NS). OT produced corresponding reductions in whole body fat mass ( P <0.05). Together, these findings support the hypothesis that sympathetic innervation of IBAT is not necessary for OT-elicited increases in BAT thermogenesis and reductions of body weight and adiposity in male DIO mice.

8.
bioRxiv ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38826286

RESUMEN

We recently reported that a novel chimeric peptide (GEP44) targeting both the glucagon-like peptide-1 receptor (GLP-1R) and neuropeptide Y1- and Y2 receptor (Y1R and Y2R) reduced energy intake and body weight (BW) in diet-induced obese (DIO) rats. We hypothesized that GEP44 reduces energy intake and BW primarily through a GLP-1R dependent mechanism. To test this hypothesis, GLP-1R +/+ mice and GLP-1R null (GLP-1R -/- ) mice were fed a high fat diet for 4 months to elicit diet-induced obesity prior to undergoing a sequential 3-day vehicle period, 3-day drug treatment (5, 10, 20 or 50 nmol/kg; GEP44 vs the selective GLP-1R agonist, exendin-4) and a 3-day washout. Energy intake, BW, core temperature and activity were measured daily. GEP44 (10, 20 and 50 nmol/kg) reduced BW after 3-day treatment in DIO male GLP-1R +/+ mice by - 1.5±0.6, -1.3±0.4 and -1.9±0.4 grams, respectively ( P <0.05), with similar effects being observed in female GLP-1R +/+ mice. These effects were absent in male and female DIO GLP-1R -/- mice suggesting that GLP-1R signaling contributes to GEP44-elicited reduction of BW. Further, GEP44 decreased energy intake in both male and female DIO GLP-1R +/+ mice, but GEP44 appeared to produce more consistent effects across multiple doses in males. In GLP-1R -/- mice, the effects of GEP44 on energy intake were only observed in males and not females, suggesting that GEP44 may reduce energy intake, in part, through a GLP-1R independent mechanism in males. In addition, GEP44 reduced core temperature and activity in both male and female GLP-1R +/+ mice suggesting that it may also reduce energy expenditure. Lastly, we show that GEP44 reduced fasting blood glucose in DIO male and female mice through GLP-1R. Together, these findings support the hypothesis that the chimeric peptide, GEP44, reduces energy intake, BW, core temperature, and glucose levels in male and female DIO mice primarily through a GLP-1R dependent mechanism.

9.
Rev Endocr Metab Disord ; 14(4): 311-29, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24065622

RESUMEN

Obesity and its associated metabolic disorders are growing health concerns in the US and worldwide. In the US alone, more than two-thirds of the adult population is classified as either overweight or obese [1], highlighting the need to develop new, effective treatments for these conditions. Whereas the hormone oxytocin is well known for its peripheral effects on uterine contraction during parturition and milk ejection during lactation, release of oxytocin from somatodendrites and axonal terminals within the central nervous system (CNS) is implicated in both the formation of prosocial behaviors and in the control of energy balance. Recent findings demonstrate that chronic administration of oxytocin reduces food intake and body weight in diet-induced obese (DIO) and genetically obese rodents with impaired or defective leptin signaling. Importantly, chronic systemic administration of oxytocin out to 6 weeks recapitulates the effects of central administration on body weight loss in DIO rodents at doses that do not result in the development of tolerance. Furthermore, these effects are coupled with induction of Fos (a marker of neuronal activation) in hindbrain areas (e.g. dorsal vagal complex (DVC)) linked to the control of meal size and forebrain areas (e.g. hypothalamus, amygdala) linked to the regulation of food intake and body weight. This review assesses the potential central and peripheral targets by which oxytocin may inhibit body weight gain, its regulation by anorexigenic and orexigenic signals, and its potential use as a therapy that can circumvent leptin resistance and reverse the behavioral and metabolic abnormalities associated with DIO and genetically obese models.


Asunto(s)
Peso Corporal , Oxitocina/fisiología , Adulto , Animales , Depresores del Apetito/farmacología , Regulación del Apetito/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Humanos , Oxitocina/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Pérdida de Peso/efectos de los fármacos
10.
Am J Physiol Endocrinol Metab ; 302(1): E134-44, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22008455

RESUMEN

Growing evidence suggests that oxytocin plays an important role in the regulation of energy balance and that central oxytocin administration induces weight loss in diet-induced obese (DIO) animals. To gain a better understanding of how oxytocin mediates these effects, we examined feeding and neuronal responses to oxytocin in animals rendered obese following exposure to either a high-fat (HFD) or low-fat diet (LFD). Our findings demonstrate that peripheral administration of oxytocin dose-dependently reduces food intake and body weight to a similar extent in rats maintained on either diet. Moreover, the effect of oxytocin to induce weight loss remained intact in leptin receptor-deficient Koletsky (fa(k)/fa(k)) rats relative to their lean littermates. To determine whether systemically administered oxytocin activates hindbrain areas that regulate meal size, we measured neuronal c-Fos induction in the nucleus of the solitary tract (NTS) and area postrema (AP). We observed a robust neuronal response to oxytocin in these hindbrain areas that was unexpectedly increased in rats rendered obese on a HFD relative to lean, LFD-fed controls. Finally, we report that repeated daily peripheral administration of oxytocin in DIO animals elicited a sustained reduction of food intake and body weight while preventing the reduction of energy expenditure characteristic of weight-reduced animals. These findings extend recent evidence suggesting that oxytocin circumvents leptin resistance and induces weight-loss in DIO animals through a mechanism involving activation of neurons in the NTS and AP, key hindbrain areas for processing satiety-related inputs.


Asunto(s)
Depresores del Apetito/uso terapéutico , Grasas de la Dieta/efectos adversos , Obesidad/tratamiento farmacológico , Oxitocina/uso terapéutico , Pérdida de Peso/efectos de los fármacos , Animales , Depresores del Apetito/administración & dosificación , Área Postrema/efectos de los fármacos , Área Postrema/metabolismo , Área Postrema/patología , Terapia Combinada , Cruzamientos Genéticos , Relación Dosis-Respuesta a Droga , Inyecciones Intraperitoneales , Leptina/sangre , Masculino , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Obesidad/sangre , Obesidad/dietoterapia , Oxitocina/administración & dosificación , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Mutantes , Ratas Sprague-Dawley , Receptores de Leptina/genética , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/uso terapéutico , Núcleo Solitario/efectos de los fármacos , Núcleo Solitario/metabolismo , Núcleo Solitario/patología
11.
Am J Physiol Endocrinol Metab ; 302(12): E1576-85, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22510712

RESUMEN

Weight loss in obese humans produces a relative leptin deficiency, which is postulated to activate potent orexigenic and energy conservation mechanisms to restrict weight loss and promote weight regain. Here we determined whether leptin replacement alone or with GLP-1 receptor agonist exendin-4 attenuates weight regain or promotes greater weight loss in weight-reduced diet-induced obese (DIO) rats. Forty percent restriction in daily intake of a high-fat diet in DIO rats for 4 wk reduced body weight by 12%, body fat by 29%, and plasma leptin by 67% and normalized leptin sensitivity. When food restriction ended, body weight, body fat, and plasma leptin increased rapidly. Daily administration of leptin [3-h intraperitoneal (ip) infusions (4 nmol·kg(-1)·h(-1))] at onset and end of dark period for 3 wk did not attenuate hyperphagia and weight regain, nor did it affect mean daily meal sizes or meal numbers. Exendin-4 (50 pmol·kg(-1)·h(-1)) infusions during the same intervals prevented postrestriction hyperphagia and weight regain by normalizing meal size. Coadministration of leptin and exendin-4 did not reduce body weight more than exendin-4 alone. Instead, leptin began to attenuate the inhibitory effects of exendin-4 on food intake, meal size, and weight regain by the end of the second week of administration. Plasma leptin in rats receiving leptin was sevenfold greater than in rats receiving vehicle and 17-fold greater than in rats receiving exendin-4. Together, these results do not support the hypothesis that leptin replacement alone or with exendin-4 attenuates weight regain or promotes greater weight loss in weight-reduced DIO rats.


Asunto(s)
Ingestión de Alimentos/efectos de los fármacos , Leptina/farmacología , Obesidad/dietoterapia , Péptidos/farmacología , Ponzoñas/farmacología , Aumento de Peso/efectos de los fármacos , Pérdida de Peso/fisiología , Animales , Composición Corporal/fisiología , Distribución de la Grasa Corporal , Peso Corporal/fisiología , Restricción Calórica , Relación Dosis-Respuesta a Droga , Exenatida , Receptor del Péptido 1 Similar al Glucagón , Hiperfagia/psicología , Leptina/sangre , Masculino , Obesidad/psicología , Ratas , Ratas Sprague-Dawley , Receptores de Glucagón/agonistas
12.
Am J Physiol Regul Integr Comp Physiol ; 303(12): R1231-40, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23115121

RESUMEN

CCK is hypothesized to inhibit meal size by acting at CCK1 receptors (CCK1R) on vagal afferent neurons that innervate the gastrointestinal tract and project to the hindbrain. Earlier studies have shown that obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats, which carry a spontaneous null mutation of the CCK1R, are hyperphagic and obese. Recent findings show that rats with CCK1R-null gene on a Fischer 344 background (Cck1r(-/-)) are lean and normophagic. In this study, the metabolic phenotype of this rat strain was further characterized. As expected, the CCK1R antagonist, devazepide, failed to stimulate food intake in the Cck1r(-/-) rats. Both Cck1r(+/+) and Cck1r(-/-) rats became diet-induced obese (DIO) when maintained on a high-fat diet relative to chow-fed controls. Cck1r(-/-) rats consumed larger meals than controls during the dark cycle and smaller meals during the light cycle. These effects were accompanied by increased food intake, total spontaneous activity, and energy expenditure during the dark cycle and an apparent reduction in respiratory quotient during the light cycle. To assess whether enhanced responsiveness to anorexigenic factors may contribute to the lean phenotype, we examined the effects of melanotan II (MTII) on food intake and body weight. We found an enhanced effect of MTII in Cck1r(-/-) rats to suppress food intake and body weight following both central and peripheral administration. These results suggest that the lean phenotype is potentially driven by increases in total spontaneous activity and energy expenditure.


Asunto(s)
Metabolismo Energético/fisiología , Actividad Motora/fisiología , Fenotipo , Receptor de Colecistoquinina A/deficiencia , Delgadez/fisiopatología , Animales , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Devazepida/farmacología , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Eliminación de Gen , Masculino , Modelos Animales , Péptidos Cíclicos/farmacología , Ratas , Ratas Endogámicas F344 , Ratas Mutantes , Receptor de Colecistoquinina A/antagonistas & inhibidores , Receptor de Colecistoquinina A/genética , Eliminación de Secuencia/genética , alfa-MSH/análogos & derivados , alfa-MSH/farmacología
13.
J Neuroendocrinol ; 34(9): e13106, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35192207

RESUMEN

The neuropeptide oxytocin (OT) has emerged as an important anorexigen in the regulation of food intake and energy balance. It has been shown that the release of OT and activation of hypothalamic OT neurons coincide with food ingestion. Its effects on feeding have largely been attributed to limiting meal size through interactions in key regulatory brain regions governing the homeostatic control of food intake such as the hypothalamus and hindbrain in addition to key feeding reward areas such as the nucleus accumbens and ventral tegmental area. Furthermore, the magnitude of an anorexigenic response to OT and feeding-related activation of the brain OT circuit are modified by the composition and flavor of a diet, as well as by a social context in which a meal is consumed. OT is particularly effective in reducing consumption of carbohydrates and sweet tastants. Pharmacologic, genetic, and pair-feeding studies indicate that OT-elicited weight loss cannot be fully explained by reductions of food intake and that the overall impact of OT on energy balance is also partly a result of OT-elicited changes in lipolysis, energy expenditure, and glucose regulation. Peripheral administration of OT mimics many of its effects when it is given into the central nervous system, raising the questions of whether and to what extent circulating OT acts through peripheral OT receptors to regulate energy balance. Although OT has been found to elicit weight loss in female mice, recent studies have indicated that sex and estrous cycle may impact oxytocinergic modulation of food intake. Despite the overall promising basic research data, attempts to use OT in the clinical setting to combat obesity and overeating have generated somewhat mixed results. The focus of this mini-review is to briefly summarize the role of OT in feeding and metabolism, address gaps and inconsistencies in our knowledge, and discuss some of the limitations to the potential use of chronic OT that should help guide future research on OT as a tailor-made anti-obesity therapeutic.


Asunto(s)
Ingestión de Alimentos , Oxitocina , Animales , Carbohidratos/farmacología , Carbohidratos/uso terapéutico , Femenino , Glucosa/farmacología , Ratones , Obesidad/tratamiento farmacológico , Oxitocina/fisiología , Receptores de Oxitocina/metabolismo , Pérdida de Peso
14.
Pediatr Res ; 69(3): 230-6, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21372758

RESUMEN

Patients with craniopharyngioma (CP), a tumor located in the pituitary and/or hypothalamus, are susceptible to developing obesity and many metabolic complications. The study aim was to create a rodent model that mimics the complex neuroanatomical and metabolic disturbances commonly seen in obese CP patients. We compared the metabolic phenotype of animals with three distinct types of hypothalamic lesions: 1) destruction of the arcuate nucleus (ARC) induced by monosodium glutamate (MSG), 2) electrolytic lesion of the adjacent ventromedial nucleus (VMN) alone, 3) both the VMN and dorsomedial nucleus (DMN), or a 4) combined medial hypothalamic lesion (CMHL) affecting the VMN, DMN, and the ARC. Only the CMHL model exhibited all key features observed in patients with hypothalamic obesity induced by CP. These features included excessive weight gain due to increased adiposity, increased food intake, and pronounced hyperinsulinemia and hyperleptinemia. Similar to characteristics of patients with CP, CMHL animals exhibited reduced plasma levels of alpha-melanocyte stimulating hormone and reduced ambulatory activity compared with weight-matched controls. Therefore, the CMHL model best mimics the complex metabolic abnormalities observed in obese CP patients compared with lesions to other hypothalamic areas and provides a foundation for future pharmacological approaches to treat obesity in children with hypothalamic damage.


Asunto(s)
Craneofaringioma/complicaciones , Modelos Animales de Enfermedad , Neoplasias Hipotalámicas/complicaciones , Obesidad/etiología , Neoplasias Hipofisarias/complicaciones , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/patología , Peso Corporal , Niño , Craneofaringioma/patología , Núcleo Hipotalámico Dorsomedial/metabolismo , Núcleo Hipotalámico Dorsomedial/patología , Ingestión de Alimentos , Metabolismo Energético , Femenino , Homeostasis , Humanos , Neoplasias Hipotalámicas/patología , Hipotálamo/anatomía & histología , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Hipotálamo/patología , Masculino , Neoplasias Hipofisarias/patología , Embarazo , Ratas , Ratas Sprague-Dawley , Glutamato de Sodio/efectos adversos , Núcleo Hipotalámico Ventromedial/metabolismo , Núcleo Hipotalámico Ventromedial/patología
16.
Front Neurosci ; 15: 743546, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720864

RESUMEN

Obesity is a growing health concern, as it increases risk for heart disease, hypertension, type 2 diabetes, cancer, COVID-19 related hospitalizations and mortality. However, current weight loss therapies are often associated with psychiatric or cardiovascular side effects or poor tolerability that limit their long-term use. The hypothalamic neuropeptide, oxytocin (OT), mediates a wide range of physiologic actions, which include reproductive behavior, formation of prosocial behaviors and control of body weight. We and others have shown that OT circumvents leptin resistance and elicits weight loss in diet-induced obese rodents and non-human primates by reducing both food intake and increasing energy expenditure (EE). Chronic intranasal OT also elicits promising effects on weight loss in obese humans. This review evaluates the potential use of OT as a therapeutic strategy to treat obesity in rodents, non-human primates, and humans, and identifies potential mechanisms that mediate this effect.

17.
Front Physiol ; 12: 726411, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646154

RESUMEN

Background: Oxytocin is a hypothalamic neuropeptide that participates in the network of appetite regulation. Recently the oxytocin signaling pathway has emerged as an attractive target for treating obesity. However, the short half-life limits its development as a clinical therapeutic. Here we provide results from testing a long-lasting, potent and selective oxytocin analog ASK1476 on its efficacy to reduce food intake and body weight in comparison to the native oxytocin peptide. Methods: ASK1476 features two specific amino acid substitutions in positions 7 and 8 combined with a short polyethylene glycol spacer. Short time dose escalation experiments testing increasing doses of 3 days each were performed in diet-induced overweight (DIO) male rats assessing effects on body weight as well as changes in food intake. Furthermore, DIO rats were tested for changes in body weight, food intake, temperature, and locomotor activity over 28 days of treatment (oxytocin, ASK1476, or vehicle). Results: In dose escalation experiments, significant reductions in food intake relative to baseline were detected beginning with doses of 15 nmol/kg ASK1476 (-15.2 ± 2.3 kcal/d, p = 0.0017) and 20 nmol/kg oxytocin (-11.2.9 ± 2.4 kcal/d, p = 0.0106) with corresponding significant changes in body weight (ASK1476: -5.2 ± 0.8 g, p = 0.0016; oxytocin: -2.6 ± 0.7 g, p = 0.0326). In long-term experiments, there was no difference on body weight change between 120 nmol/kg/d ASK1476 (-71.4 ± 34.2 g, p = 0.039) and 600 nmol/kg/d oxytocin (-91.8 ± 32.2 g, p = 0.035) relative to vehicle (706.9 ± 28.3 g), indicating a stronger dose response for ASK1476. Likewise, both ASK1476 and oxytocin at these doses resulted in similar reductions in 28-day cumulative food intake (ASK1476: -562.7 ± 115.0 kcal, p = 0.0001; oxytocin: -557.1 ± 101.3 kcal, p = 0.0001) relative to vehicle treatment (2716 ± 75.4 kcal), while no effects were detected on locomotor activity or body temperature. Conclusion: This study provides proof-of-concept data demonstrating an oxytocin analog with extended in vivo stability and improved potency to reduce food intake and body weight in DIO animals which could mark a new avenue in anti-obesity drug interventions.

18.
Front Physiol ; 12: 725912, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566687

RESUMEN

Previous studies have indicated that oxytocin (OT) reduces body weight in diet-induced obese (DIO) rodents through reductions in energy intake and increases in energy expenditure. We recently demonstrated that hindbrain [fourth ventricular (4V)] administration of OT evokes weight loss and elevates interscapular brown adipose tissue temperature (T IBAT ) in DIO rats. What remains unclear is whether OT can be used as an adjunct with other drugs that directly target beta-3 receptors in IBAT to promote BAT thermogenesis and reduce body weight in DIO rats. We hypothesized that the combined treatment of OT and the beta-3 agonist, CL 316243, would produce an additive effect to decrease body weight and adiposity in DIO rats by reducing energy intake and increasing BAT thermogenesis. We assessed the effects of 4V infusions of OT (16 nmol/day) or vehicle (VEH) in combination with daily intraperitoneal injections of CL 316243 (0.5 mg/kg) or VEH on food intake, T IBAT , body weight and body composition. OT and CL 316243 alone reduced body weight by 7.8 ± 1.3% (P < 0.05) and 9.1 ± 2.1% (P < 0.05), respectively, but the combined treatment produced more pronounced weight loss (15.5 ± 1.2%; P < 0.05) than either treatment alone. These effects were associated with decreased adiposity, adipocyte size, energy intake and increased uncoupling protein 1 (UCP-1) content in epididymal white adipose tissue (EWAT) (P < 0.05). In addition, CL 316243 alone (P < 0.05) and in combination with OT (P < 0.05) elevated T IBAT and IBAT UCP-1 content and IBAT thermogenic gene expression. These findings are consistent with the hypothesis that the combined treatment of OT and the beta-3 agonist, CL 316243, produces an additive effect to decrease body weight. The findings from the current study suggest that the effects of the combined treatment on energy intake, fat mass, adipocyte size and browning of EWAT were not additive and appear to be driven, in part, by transient changes in energy intake in response to OT or CL 316243 alone as well as CL 316243-elicited reduction of fat mass and adipocyte size and induction of browning of EWAT.

19.
J Clin Med ; 10(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34768597

RESUMEN

Existing studies show that CNS oxytocin (OT) signaling is important in the control of energy balance, but it is unclear which neurons may contribute to these effects. Our goals were to examine (1) the dose-response effects of acute OT administration into the third (3V; forebrain) and fourth (4V; hindbrain) ventricles to assess sensitivity to OT in forebrain and hindbrain sites, (2) the extent to which chronic 4V administration of OT reduces weight gain associated with the progression of diet-induced obesity, and (3) whether nucleus tractus solitarius (NTS) catecholamine neurons are downstream targets of 4V OT. Initially, we examined the dose-response effects of 3V and 4V OT (0.04, 0.2, 1, or 5 µg). 3V and 4V OT (5 µg) suppressed 0.5-h food intake by 71.7 ± 6.0% and 60 ± 12.9%, respectively. 4V OT (0.04, 0.2, 1 µg) reduced food intake by 30.9 ± 12.9, 42.1 ± 9.4, and 56.4 ± 9.0%, respectively, whereas 3V administration of OT (1 µg) was only effective at reducing 0.5-h food intake by 38.3 ± 10.9%. We subsequently found that chronic 4V OT infusion, as with chronic 3V infusion, reduced body weight gain (specific to fat mass) and tended to reduce plasma leptin in high-fat diet (HFD)-fed rats, in part, through a reduction in energy intake. Lastly, we determined that 4V OT increased the number of hindbrain caudal NTS Fos (+) neurons (156 ± 25) relative to vehicle (12 ± 3). The 4V OT also induced Fos in tyrosine hydroxylase (TH; marker of catecholamine neurons) (+) neurons (25 ± 7%) relative to vehicle (0.8 ± 0.3%). Collectively, these findings support the hypothesis that OT within the hindbrain is effective at reducing food intake, weight gain, and adiposity and that NTS catecholamine neurons in addition to non-catecholaminergic neurons are downstream targets of CNS OT.

20.
Endocr Rev ; 41(2)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31803919

RESUMEN

There is growing evidence that oxytocin (OXT), a hypothalamic hormone well recognized for its effects in inducing parturition and lactation, has important metabolic effects in both sexes. The purpose of this review is to summarize the physiologic effects of OXT on metabolism and to explore its therapeutic potential for metabolic disorders. In model systems, OXT promotes weight loss by decreasing energy intake. Pair-feeding studies suggest that OXT-induced weight loss may also be partly due to increased energy expenditure and/or lipolysis. In humans, OXT appears to modulate both homeostatic and reward-driven food intake, although the observed response depends on nutrient milieu (eg, obese vs. nonobese), clinical characteristics (eg, sex), and experimental paradigm. In animal models, OXT is anabolic to muscle and bone, which is consistent with OXT-induced weight loss occurring primarily via fat loss. In some human observational studies, circulating OXT concentrations are also positively associated with lean mass and bone mineral density. The impact of exogenous OXT on human obesity is the focus of ongoing investigation. Future randomized, placebo-controlled clinical trials in humans should include rigorous, standardized, and detailed assessments of adherence, adverse effects, pharmacokinetics/pharmacodynamics, and efficacy in the diverse populations that may benefit from OXT, in particular those in whom hypothalamic OXT signaling may be abnormal or impaired (eg, individuals with Sim1 deficiency, Prader-Willi syndrome, or craniopharyngioma). Future studies will also have the opportunity to investigate the characteristics of new OXT mimetic peptides and the obligation to consider long-term effects, especially when OXT is given to children and adolescents. (Endocrine Reviews XX: XX - XX, 2020).


Asunto(s)
Composición Corporal/fisiología , Densidad Ósea/fisiología , Ingestión de Alimentos/fisiología , Obesidad/tratamiento farmacológico , Oxitocina/metabolismo , Pérdida de Peso/fisiología , Animales , Humanos , Oxitocina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA