Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Neurophysiol ; 131(2): 417-434, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38197163

RESUMEN

Network flexibility is important for adaptable behaviors. This includes neuronal switching, where neurons alter their network participation, including changing from single- to dual-network activity. Understanding the implications of neuronal switching requires determining how a switching neuron interacts with each of its networks. Here, we tested 1) whether "home" and second networks, operating via divergent rhythm generation mechanisms, regulate a switching neuron and 2) if a switching neuron, recruited via modulation of intrinsic properties, contributes to rhythm or pattern generation in a new network. Small, well-characterized feeding-related networks (pyloric, ∼1 Hz; gastric mill, ∼0.1 Hz) and identified modulatory inputs make the isolated crab (Cancer borealis) stomatogastric nervous system (STNS) a useful model to study neuronal switching. In particular, the neuropeptide Gly1-SIFamide switches the lateral posterior gastric (LPG) neuron (2 copies) from pyloric-only to dual-frequency pyloric/gastric mill (fast/slow) activity via modulation of LPG-intrinsic properties. Using current injections to manipulate neuronal activity, we found that gastric mill, but not pyloric, network neurons regulated the intrinsically generated LPG slow bursting. Conversely, selective elimination of LPG from both networks using photoinactivation revealed that LPG regulated gastric mill neuron-firing frequencies but was not necessary for gastric mill rhythm generation or coordination. However, LPG alone was sufficient to produce a distinct pattern of network coordination. Thus, modulated intrinsic properties underlying dual-network participation may constrain which networks can regulate switching neuron activity. Furthermore, recruitment via intrinsic properties may occur in modulatory states where it is important for the switching neuron to actively contribute to network output.NEW & NOTEWORTHY We used small, well-characterized networks to investigate interactions between rhythmic networks and neurons that switch their network participation. For a neuron switching into dual-network activity, only the second network regulated its activity in that network. In addition, the switching neuron was sufficient but not necessary to coordinate second network neurons and regulated their activity levels. Thus, regulation of switching neurons may be selective, and a switching neuron is not necessarily simply a follower in additional networks.


Asunto(s)
Braquiuros , Neuronas , Animales , Neuronas/fisiología , Píloro/fisiología , Braquiuros/fisiología , Ganglios de Invertebrados/fisiología , Periodicidad , Red Nerviosa/fisiología
2.
J Neurophysiol ; 132(1): 184-205, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38776457

RESUMEN

Oscillatory networks underlying rhythmic motor behaviors, and sensory and complex neural processing, are flexible, even in their neuronal composition. Neuromodulatory inputs enable neurons to switch participation between networks or participate in multiple networks simultaneously. Neuromodulation of internetwork synapses can both recruit and coordinate a switching neuron in a second network. We previously identified an example in which a neuron is recruited into dual-network activity via peptidergic modulation of intrinsic properties. We now ask whether the same neuropeptide also modulates internetwork synapses for internetwork coordination. The crab (Cancer borealis) stomatogastric nervous system contains two well-defined feeding-related networks (pyloric, food filtering, ∼1 Hz; gastric mill, food chewing, ∼0.1 Hz). The projection neuron MCN5 uses the neuropeptide Gly1-SIFamide to recruit the pyloric-only lateral posterior gastric (LPG) neuron into dual pyloric- plus gastric mill-timed bursting via modulation of LPG's intrinsic properties. Descending input is not required for a coordinated rhythm, thus intranetwork synapses between LPG and its second network must underlie coordination among these neurons. However, synapses between LPG and gastric mill neurons have not been documented. Using two-electrode voltage-clamp recordings, we found that graded synaptic currents between LPG and gastric mill neurons (lateral gastric, inferior cardiac, and dorsal gastric) were primarily negligible in saline, but were enhanced by Gly1-SIFamide. Furthermore, LPG and gastric mill neurons entrain each other during Gly1-SIFamide application, indicating bidirectional, functional connectivity. Thus, a neuropeptide mediates neuronal switching through parallel actions, modulating intrinsic properties for recruitment into a second network and as shown here, also modulating bidirectional internetwork synapses for coordination.NEW & NOTEWORTHY Neuromodulation can enable neurons to simultaneously coordinate with separate networks. Both recruitment into, and coordination with, a second network can occur via modulation of internetwork synapses. Alternatively, recruitment can occur via modulation of intrinsic ionic currents. We find that the same neuropeptide previously determined to modulate intrinsic currents also modulates bidirectional internetwork synapses that are typically ineffective. Thus, complementary modulatory peptide actions enable recruitment and coordination of a neuron into a second network.


Asunto(s)
Braquiuros , Neuropéptidos , Sinapsis , Animales , Braquiuros/fisiología , Sinapsis/fisiología , Neuropéptidos/metabolismo , Neuropéptidos/farmacología , Neuronas/fisiología , Ganglios de Invertebrados/fisiología , Oligopéptidos/farmacología , Red Nerviosa/fisiología , Píloro/fisiología , Masculino , Potenciales de Acción/fisiología
3.
J Neurosci ; 41(37): 7848-7863, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34349000

RESUMEN

Oscillatory networks underlie rhythmic behaviors (e.g., walking, chewing) and complex behaviors (e.g., memory formation, decision-making). Flexibility of oscillatory networks includes neurons switching between single- and dual-network participation, even generating oscillations at two distinct frequencies. Modulation of synaptic strength can underlie this neuronal switching. Here we ask whether switching into dual-frequency oscillations can also result from modulation of intrinsic neuronal properties. The isolated stomatogastric nervous system of male Cancer borealis crabs contains two well-characterized rhythmic feeding-related networks (pyloric, ∼1 Hz; gastric mill, ∼0.1 Hz). The identified modulatory projection neuron MCN5 causes the pyloric-only lateral posterior gastric (LPG) neuron to switch to dual pyloric/gastric mill bursting. Bath applying the MCN5 neuropeptide transmitter Gly1-SIFamide only partly mimics the LPG switch to dual activity because of continued LP neuron inhibition of LPG. Here, we find that MCN5 uses a cotransmitter, glutamate, to inhibit LP, unlike Gly1-SIFamide excitation of LP. Thus, we modeled the MCN5-elicited LPG switching with Gly1-SIFamide application and LP photoinactivation. Using hyperpolarization of pyloric pacemaker neurons and gastric mill network neurons, we found that LPG pyloric-timed oscillations require rhythmic electrical synaptic input. However, LPG gastric mill-timed oscillations do not require any pyloric/gastric mill synaptic input and are voltage-dependent. Thus, we identify modulation of intrinsic properties as an additional mechanism for switching a neuron into dual-frequency activity. Instead of synaptic modulation switching a neuron into a second network as a passive follower, modulation of intrinsic properties could enable a switching neuron to become an active contributor to rhythm generation in the second network.SIGNIFICANCE STATEMENT Neuromodulation of oscillatory networks can enable network neurons to switch from single- to dual-network participation, even when two networks oscillate at distinct frequencies. We used small, well-characterized networks to determine whether modulation of synaptic strength, an identified mechanism for switching, is necessary for dual-network recruitment. We demonstrate that rhythmic electrical synaptic input is required for continued linkage with a "home" network, whereas modulation of intrinsic properties enables a neuron to generate oscillations at a second frequency. Neuromodulator-induced switches in neuronal participation between networks occur in motor, cognitive, and sensory networks. Our study highlights the importance of considering intrinsic properties as a pivotal target for enabling parallel participation of a neuron in two oscillatory networks.


Asunto(s)
Potenciales de Acción/fisiología , Generadores de Patrones Centrales/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Animales , Braquiuros , Ganglios de Invertebrados/fisiología
4.
J Neurophysiol ; 128(5): 1181-1198, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36197020

RESUMEN

Neural network flexibility includes changes in neuronal participation between networks, such as the switching of neurons between single- and dual-network activity. We previously identified a neuron that is recruited to burst in time with an additional network via modulation of its intrinsic membrane properties, instead of being recruited synaptically into the second network. However, the modulated intrinsic properties were not determined. Here, we use small networks in the Jonah crab (Cancer borealis) stomatogastric nervous system (STNS) to examine modulation of intrinsic properties underlying neuropeptide (Gly1-SIFamide)-elicited neuronal switching. The lateral posterior gastric neuron (LPG) switches from exclusive participation in the fast pyloric (∼1 Hz) network, due to electrical coupling, to dual-network activity that includes periodic escapes from the fast rhythm via intrinsically generated oscillations at the slower gastric mill network frequency (∼0.1 Hz). We isolated LPG from both networks by pharmacology and hyperpolarizing current injection. Gly1-SIFamide increased LPG intrinsic excitability and rebound from inhibition and decreased spike frequency adaptation, which can all contribute to intrinsic bursting. Using ion substitution and channel blockers, we found that a hyperpolarization-activated current, a persistent sodium current, and calcium or calcium-related current(s) appear to be primary contributors to Gly1-SIFamide-elicited LPG intrinsic bursting. However, this intrinsic bursting was more sensitive to blocking currents when LPG received rhythmic electrical coupling input from the fast network than in the isolated condition. Overall, a switch from single- to dual-network activity can involve modulation of multiple intrinsic properties, while synaptic input from a second network can shape the contributions of these properties.NEW & NOTEWORTHY Neuropeptide-elicited intrinsic bursting was recently determined to switch a neuron from single- to dual-network participation. Here we identified multiple intrinsic properties modulated in the dual-network state and candidate ion channels underlying the intrinsic bursting. Bursting at the second network frequency was more sensitive to blocking currents in the dual-network state than when neurons were synaptically isolated from their home network. Thus, synaptic input can shape the contributions of modulated intrinsic properties underlying dual-network activity.


Asunto(s)
Braquiuros , Neuropéptidos , Animales , Calcio , Neuronas/fisiología , Píloro/fisiología
5.
Nat Rev Neurosci ; 18(7): 389-403, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28592905

RESUMEN

Colocalization of small-molecule and neuropeptide transmitters is common throughout the nervous system of all animals. The resulting co-transmission, which provides conjoint ionotropic ('classical') and metabotropic ('modulatory') actions, includes neuropeptide- specific aspects that are qualitatively different from those that result from metabotropic actions of small-molecule transmitter release. Here, we focus on the flexibility afforded to microcircuits by such co-transmission, using examples from various nervous systems. Insights from such studies indicate that co-transmission mediated even by a single neuron can configure microcircuit activity via an array of contributing mechanisms, operating on multiple timescales, to enhance both behavioural flexibility and robustness.


Asunto(s)
Neuronas/fisiología , Neuropéptidos/fisiología , Neurotransmisores/fisiología , Transmisión Sináptica/fisiología , Animales , Humanos , Modelos Neurológicos
6.
Gen Comp Endocrinol ; 302: 113688, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33275935

RESUMEN

Neuropeptides comprise the largest class of neural and neuroendocrine signaling molecules. Vertebrate tachykinins (TKs) and the structurally-related invertebrate tachykinin-related peptides (TRPs) together form the largest neuropeptide superfamily, with a number of conserved neural and neuroendocrine functions across species. Arthropods, including crustaceans, have provided many insights into neuropeptide signaling and function. Crustacean tachykinin-related peptide occurs in endocrine organs and cells and in two of the major crustacean CNS components, the supraoesophageal ganglion ("brain") and the stomatogastric nervous system. However, little is known about TRP sources in the remaining major CNS component, the thoracic ganglion mass (TGM). To gain further insight into the function of this peptide, we aimed to identify intrinsic TRP sources in the TGM of the Jonah crab, Cancer borealis. We first adapted a clearing protocol to improve TRP immunoreactivity specifically in the TGM, which is a dense, fused mass of multiple ganglia in short-bodied crustaceans such as Cancer species of crabs. We verified that the clearing protocol avoided distortion of cell body morphology yet increased visibility of TRP immunoreactivity. Using confocal microscopy, we found TRP-immunoreactive (TRP-IR) axon tracts running the length of the TGM, TRP-IR neuropil in all ganglia, and approximately 110 TRP-IR somata distributed throughout the TGM, within and between ganglia. These somata likely represent both neural and neuroendocrine sources of TRP. Thus, there are many potential intrinsic sources of TRP in the TGM that are positioned to regulate behaviors such as food intake, locomotion, respiration, and reproduction.


Asunto(s)
Braquiuros , Neoplasias , Neuropéptidos , Animales , Sistema Nervioso Central , Ganglios , Ganglios de Invertebrados , Taquicininas
7.
J Neurophysiol ; 121(3): 950-972, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30649961

RESUMEN

Microcircuit modulation by peptides is well established, but the cellular/synaptic mechanisms whereby identified neurons with identified peptide transmitters modulate microcircuits remain unknown for most systems. Here, we describe the distribution of GYRKPPFNGSIFamide (Gly1-SIFamide) immunoreactivity (Gly1-SIFamide-IR) in the stomatogastric nervous system (STNS) of the crab Cancer borealis and the Gly1-SIFamide actions on the two feeding-related circuits in the stomatogastric ganglion (STG). Gly1-SIFamide-IR localized to somata in the paired commissural ganglia (CoGs), two axons in the nerves connecting each CoG with the STG, and the CoG and STG neuropil. We identified one Gly1-SIFamide-IR projection neuron innervating the STG as the previously identified modulatory commissural neuron 5 (MCN5). Brief (~10 s) MCN5 stimulation excites some pyloric circuit neurons. We now find that bath applying Gly1-SIFamide to the isolated STG also enhanced pyloric rhythm activity and activated an imperfectly coordinated gastric mill rhythm that included unusually prolonged bursts in two circuit neurons [inferior cardiac (IC), lateral posterior gastric (LPG)]. Furthermore, longer duration (>30 s) MCN5 stimulation activated a Gly1-SIFamide-like gastric mill rhythm, including prolonged IC and LPG bursting. The prolonged LPG bursting decreased the coincidence of its activity with neurons to which it is electrically coupled. We also identified local circuit feedback onto the MCN5 axon terminals, which may contribute to some distinctions between the responses to MCN5 stimulation and Gly1-SIFamide application. Thus, MCN5 adds to the few identified projection neurons that modulate a well-defined circuit at least partly via an identified neuropeptide transmitter and provides an opportunity to study peptide regulation of electrical coupled neurons in a functional context. NEW & NOTEWORTHY Limited insight exists regarding how identified peptidergic neurons modulate microcircuits. We show that the modulatory projection neuron modulatory commissural neuron 5 (MCN5) is peptidergic, containing Gly1-SIFamide. MCN5 and Gly1-SIFamide elicit similar output from two well-defined motor circuits. Their distinct actions may result partly from circuit feedback onto the MCN5 axon terminals. Their similar actions include eliciting divergent activity patterns in normally coactive, electrically coupled neurons, providing an opportunity to examine peptide modulation of electrically coupled neurons in a functional context.


Asunto(s)
Axones/fisiología , Ganglios de Invertebrados/fisiología , Contracción Muscular , Neuropéptidos/farmacología , Píloro/inervación , Potenciales de Acción , Animales , Axones/efectos de los fármacos , Braquiuros , Retroalimentación Fisiológica , Ganglios de Invertebrados/citología , Ganglios de Invertebrados/efectos de los fármacos , Periodicidad , Píloro/fisiología
8.
J Neurophysiol ; 118(2): 949-963, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28469000

RESUMEN

Central pattern generator (CPG) motor circuits underlying rhythmic behaviors provide feedback to the projection neuron inputs that drive these circuits. This feedback elicits projection neuron bursting linked to CPG rhythms. The brief periodic interruptions in projection neuron activity in turn influence CPG output, gate sensory input, and enable coordination of multiple target CPGs. However, despite the importance of the projection neuron activity level for circuit output, it remains unknown whether feedback also regulates projection neuron intraburst firing rates. I addressed this issue using identified neurons in the stomatogastric nervous system of the crab, Cancer borealis, a small motor system controlling chewing and filtering of food. Mechanosensory input triggers long-lasting activation of two projection neurons to elicit a chewing rhythm, during which their activity is patterned by circuit feedback. Here I show that feedback increases the intraburst firing rate of only one of the two projection neurons (commissural projection neuron 2: CPN2). Furthermore, this is not a fixed property because the CPN2 intraburst firing rate is decreased instead of increased by feedback when a chewing rhythm is activated by a different modulatory input. I establish that a feedback pathway that does not impact the CPN2 activity level in the control state inhibits CPN2 sufficiently to trigger postinhibitory rebound following mechanosensory stimulation. The rebound increases the CPN2 intraburst firing rate above the rate due only to mechanosensory activation of CPN2. Thus in addition to patterning projection neuron activity, circuit feedback can adjust the intraburst firing rate, demonstrating a novel functional role for circuit feedback to central projection neurons.NEW & NOTEWORTHY Feedback from central pattern generator (CPG) circuits patterns activity of their projection neuron inputs. However, whether the intraburst firing rate between rhythmic feedback inhibition is also impacted by CPG feedback was not known. I establish that CPG feedback can alter the projection neuron intraburst firing rate through interactions with projection neuron intrinsic properties. The contribution of feedback to projection neuron activity level is specific to the modulatory condition, demonstrating a state dependence for this novel role of circuit feedback.


Asunto(s)
Potenciales de Acción/fisiología , Generadores de Patrones Centrales/fisiología , Retroalimentación Fisiológica , Movimiento/fisiología , Neuronas/fisiología , Animales , Braquiuros , Ingestión de Alimentos/fisiología , Ganglios de Invertebrados/citología , Ganglios de Invertebrados/fisiología , Masculino , Microelectrodos , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Neuronas/citología , Tacto/fisiología
9.
J Neurophysiol ; 118(5): 2806-2818, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28814634

RESUMEN

Sensory feedback influences motor circuits and/or their projection neuron inputs to adjust ongoing motor activity, but its efficacy varies. Currently, less is known about regulation of sensory feedback onto projection neurons that control downstream motor circuits than about sensory regulation of the motor circuit neurons themselves. In this study, we tested whether sensory feedback onto projection neurons is sensitive only to activation of a motor system, or also to the modulatory state underlying that activation, using the crab Cancer borealis stomatogastric nervous system. We examined how proprioceptor neurons (gastropyloric receptors, GPRs) influence the gastric mill (chewing) circuit neurons and the projection neurons (MCN1, CPN2) that drive the gastric mill rhythm. During gastric mill rhythms triggered by the mechanosensory ventral cardiac neurons (VCNs), GPR was shown previously to influence gastric mill circuit neurons, but its excitation of MCN1/CPN2 was absent. In this study, we tested whether GPR effects on MCN1/CPN2 are also absent during gastric mill rhythms triggered by the peptidergic postoesophageal commissure (POC) neurons. The VCN and POC pathways both trigger lasting MCN1/CPN2 activation, but their distinct influence on circuit feedback to these neurons produces different gastric mill motor patterns. We show that GPR excites MCN1 and CPN2 during the POC-gastric mill rhythm, altering their firing rates and activity patterns. This action changes both phases of the POC-gastric mill rhythm, whereas GPR only alters one phase of the VCN-gastric mill rhythm. Thus sensory feedback to projection neurons can be gated as a function of the modulatory state of an active motor system, not simply switched on/off with the onset of motor activity.NEW & NOTEWORTHY Sensory feedback influences motor systems (i.e., motor circuits and their projection neuron inputs). However, whether regulation of sensory feedback to these projection neurons is consistent across different versions of the same motor pattern driven by the same motor system was not known. We found that gating of sensory feedback to projection neurons is determined by the modulatory state of the motor system, and not simply by whether the system is active or inactive.


Asunto(s)
Retroalimentación Sensorial/fisiología , Movimiento/fisiología , Neuronas/fisiología , Filtrado Sensorial/fisiología , Potenciales de Acción , Animales , Braquiuros , Generadores de Patrones Centrales/fisiología , Estimulación Eléctrica , Ganglios de Invertebrados/fisiología , Masculino , Masticación/fisiología , Microelectrodos , Vías Nerviosas/fisiología , Periodicidad , Propiocepción/fisiología , Técnicas de Cultivo de Tejidos
10.
J Exp Biol ; 220(Pt 7): 1233-1244, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28104799

RESUMEN

Adaptive changes in the output of neural circuits underlying rhythmic behaviors are relayed to muscles via motor neuron activity. Presynaptic and postsynaptic properties of neuromuscular junctions can impact the transformation from motor neuron activity to muscle response. Further, synaptic plasticity occurring on the time scale of inter-spike intervals can differ between multiple muscles innervated by the same motor neuron. In rhythmic behaviors, motor neuron bursts can elicit additional synaptic plasticity. However, it is unknown whether plasticity regulated by the longer time scale of inter-burst intervals also differs between synapses from the same neuron, and whether any such distinctions occur across a physiological activity range. To address these issues, we measured electrical responses in muscles innervated by a chewing circuit neuron, the lateral gastric (LG) motor neuron, in a well-characterized small motor system, the stomatogastric nervous system (STNS) of the Jonah crab, Cancer borealisIn vitro and in vivo, sensory, hormonal and modulatory inputs elicit LG bursting consisting of inter-spike intervals of 50-250 ms and inter-burst intervals of 2-24 s. Muscles expressed similar facilitation measured with paired stimuli except at the shortest inter-spike interval. However, distinct decay time constants resulted in differences in temporal summation. In response to bursting activity, augmentation occurred to different extents and saturated at different inter-burst intervals. Further, augmentation interacted with facilitation, resulting in distinct intra-burst facilitation between muscles. Thus, responses of multiple target muscles diverge across a physiological activity range as a result of distinct synaptic properties sensitive to multiple time scales.


Asunto(s)
Braquiuros/fisiología , Neuronas Motoras/metabolismo , Músculos/inervación , Unión Neuromuscular/fisiología , Animales , Braquiuros/citología , Ganglios de Invertebrados/fisiología , Masculino , Contracción Muscular , Músculos/fisiología , Sinapsis/fisiología
11.
J Neurophysiol ; 115(6): 3249-63, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27030739

RESUMEN

Modulatory projection neurons alter network neuron synaptic and intrinsic properties to elicit multiple different outputs. Sensory and other inputs elicit a range of modulatory neuron activity that is further shaped by network feedback, yet little is known regarding how the impact of network feedback on modulatory neurons regulates network output across a physiological range of modulatory neuron activity. Identified network neurons, a fully described connectome, and a well-characterized, identified modulatory projection neuron enabled us to address this issue in the crab (Cancer borealis) stomatogastric nervous system. The modulatory neuron modulatory commissural neuron 1 (MCN1) activates and modulates two networks that generate rhythms via different cellular mechanisms and at distinct frequencies. MCN1 is activated at rates of 5-35 Hz in vivo and in vitro. Additionally, network feedback elicits MCN1 activity time-locked to motor activity. We asked how network activation, rhythm speed, and neuron activity levels are regulated by the presence or absence of network feedback across a physiological range of MCN1 activity rates. There were both similarities and differences in responses of the two networks to MCN1 activity. Many parameters in both networks were sensitive to network feedback effects on MCN1 activity. However, for most parameters, MCN1 activity rate did not determine the extent to which network output was altered by the addition of network feedback. These data demonstrate that the influence of network feedback on modulatory neuron activity is an important determinant of network output and feedback can be effective in shaping network output regardless of the extent of network modulation.


Asunto(s)
Potenciales de Acción/fisiología , Retroalimentación Fisiológica/fisiología , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Análisis de Varianza , Animales , Biofisica , Braquiuros , Ganglios de Invertebrados/citología , Molleja No Aviar/fisiología , Masculino , Actividad Motora/fisiología , Periodicidad , Estimulación Física
12.
J Neurosci ; 33(46): 18047-64, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24227716

RESUMEN

Different modulatory inputs commonly elicit distinct rhythmic motor patterns from a central pattern generator (CPG), but they can instead elicit the same pattern. We are determining the rhythm-generating mechanisms in this latter situation, using the gastric mill (chewing) CPG in the crab (Cancer borealis) stomatogastric ganglion, where stimulating the projection neuron MCN1 (modulatory commissural neuron 1) or bath applying CabPK (C. borealis pyrokinin) peptide elicits the same gastric mill motor pattern, despite configuring different gastric mill circuits. In both cases, the core rhythm generator includes the same reciprocally inhibitory neurons LG (lateral gastric) and Int1 (interneuron 1), but the pyloric (food-filtering) circuit pacemaker neuron AB (anterior burster) is additionally necessary only for CabPK rhythm generation. MCN1 drives this rhythm generator by activating in the LG neuron the modulator-activated inward current (IMI), which waxes and wanes periodically due to phasic feedback inhibition of MCN1 transmitter release. Each buildup of IMI enables the LG neuron to generate a self-terminating burst and thereby alternate with Int1 activity. Here we establish that CabPK drives gastric mill rhythm generation by activating in the LG neuron IMI plus a slowly activating transient, low-threshold inward current (ITrans-LTS) that is voltage, time, and Ca(2+) dependent. Unlike MCN1, CabPK maintains a steady IMI activation, causing a subthreshold depolarization in LG that facilitates a periodic postinhibitory rebound burst caused by the regular buildup and decay of the availability of ITrans-LTS. Thus, different modulatory inputs can use different rhythm-generating mechanisms to drive the same neuronal rhythm. Additionally, the same ionic current (IMI) can play different roles under these different conditions, while different currents (IMI, ITrans-LTS) can play the same role.


Asunto(s)
Potenciales de Acción/fisiología , Ganglios de Invertebrados/citología , Ganglios de Invertebrados/fisiología , Red Nerviosa/citología , Red Nerviosa/fisiología , Periodicidad , Animales , Braquiuros , Neuronas/fisiología , Técnicas de Cultivo de Órganos
13.
eNeuro ; 11(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38834302

RESUMEN

Linked rhythmic behaviors, such as respiration/locomotion or swallowing/chewing, often require coordination for proper function. Despite its prevalence, the cellular mechanisms controlling coordination of the underlying neural networks remain undetermined in most systems. We use the stomatogastric nervous system of the crab Cancer borealis to investigate mechanisms of internetwork coordination, due to its small, well-characterized feeding-related networks (gastric mill [chewing, ∼0.1 Hz]; pyloric [filtering food, ∼1 Hz]). Here, we investigate coordination between these networks during the Gly1-SIFamide neuropeptide modulatory state. Gly1-SIFamide activates a unique triphasic gastric mill rhythm in which the typically pyloric-only LPG neuron generates dual pyloric-plus gastric mill-timed oscillations. Additionally, the pyloric rhythm exhibits shorter cycles during gastric mill rhythm-timed LPG bursts, and longer cycles during IC, or IC plus LG gastric mill neuron bursts. Photoinactivation revealed that LPG is necessary to shorten pyloric cycle period, likely through its rectified electrical coupling to pyloric pacemaker neurons. Hyperpolarizing current injections demonstrated that although LG bursting enables IC bursts, only gastric mill rhythm bursts in IC are necessary to prolong the pyloric cycle period. Surprisingly, LPG photoinactivation also eliminated prolonged pyloric cycles, without changing IC firing frequency or gastric mill burst duration, suggesting that pyloric cycles are prolonged via IC synaptic inhibition of LPG, which indirectly slows the pyloric pacemakers via electrical coupling. Thus, the same dual-network neuron directly conveys excitation from its endogenous bursting and indirectly funnels synaptic inhibition to enable one network to alternately decrease and increase the cycle period of a related network.


Asunto(s)
Braquiuros , Ganglios de Invertebrados , Neuronas , Neuropéptidos , Animales , Braquiuros/fisiología , Neuropéptidos/farmacología , Neuropéptidos/metabolismo , Neuronas/fisiología , Neuronas/efectos de los fármacos , Ganglios de Invertebrados/fisiología , Ganglios de Invertebrados/efectos de los fármacos , Potenciales de Acción/fisiología , Potenciales de Acción/efectos de los fármacos , Red Nerviosa/fisiología , Red Nerviosa/efectos de los fármacos , Masculino , Conducta Alimentaria/fisiología , Conducta Alimentaria/efectos de los fármacos , Píloro/fisiología , Píloro/efectos de los fármacos , Periodicidad
14.
J Neurosci ; 32(27): 9182-93, 2012 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-22764227

RESUMEN

Bidirectional communication (i.e., feedforward and feedback pathways) between functional levels is common in neural systems, but in most systems little is known regarding the function and modifiability of the feedback pathway. We are exploring this issue in the crab (Cancer borealis) stomatogastric nervous system by examining bidirectional communication between projection neurons and their target central pattern generator (CPG) circuit neurons. Specifically, we addressed the question of whether the peptidergic post-oesophageal commissure (POC) neurons trigger a specific gastric mill (chewing) motor pattern in the stomatogastric ganglion solely by activating projection neurons, or by additionally altering the strength of CPG feedback to these projection neurons. The POC-triggered gastric mill rhythm is shaped by feedback inhibition onto projection neurons from a CPG neuron. Here, we establish that POC stimulation triggers a long-lasting enhancement of feedback-mediated IPSC/Ps in the projection neurons, which persists for the same duration as POC-gastric mill rhythms. This strengthened CPG feedback appears to result from presynaptic modulation, because it also occurs in other projection neurons whose activity does not change after POC stimulation. To determine the function of this strengthened feedback synapse, we compared the influence of dynamic-clamp-injected feedback IPSPs of pre- and post-POC amplitude into a pivotal projection neuron after POC stimulation. Only the post-POC amplitude IPSPs elicited the POC-triggered activity pattern in this projection neuron and enabled full expression of the POC-gastric mill rhythm. Thus, the strength of CPG feedback to projection neurons is modifiable and can be instrumental to motor pattern selection.


Asunto(s)
Braquiuros/fisiología , Sistema Nervioso Central/fisiología , Retroalimentación Fisiológica/fisiología , Ganglios de Invertebrados/fisiología , Neuronas Motoras/fisiología , Vías Nerviosas/fisiología , Animales , Braquiuros/citología , Sistema Nervioso Central/citología , Ganglios de Invertebrados/citología , Masculino , Neuronas Motoras/citología , Vías Nerviosas/citología
15.
PLoS Biol ; 8(4): e1000348, 2010 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-20386723

RESUMEN

In many brain regions, inhibition is mediated by numerous classes of specialized interneurons, but within the rodent dorsal lateral geniculate nucleus (dLGN), a single class of interneuron is present. dLGN interneurons inhibit thalamocortical (TC) neurons and regulate the activity of TC neurons evoked by retinal ganglion cells (RGCs), thereby controlling the visually evoked signals reaching the cortex. It is not known whether neuromodulation can regulate interneuron firing mode and the resulting inhibition. Here, we examine this in brain slices. We find that cholinergic modulation regulates the output mode of these interneurons and controls the resulting inhibition in a manner that is dependent on the level of afferent activity. When few RGCs are activated, acetylcholine suppresses synaptically evoked interneuron spiking, and strongly reduces disynaptic inhibition. In contrast, when many RGCs are coincidently activated, single stimuli promote the generation of a calcium spike, and stimulation with a brief train evokes prolonged plateau potentials lasting for many seconds that in turn lead to sustained inhibition. These findings indicate that cholinergic modulation regulates feedforward inhibition in a context-dependent manner.


Asunto(s)
Acetilcolina/metabolismo , Interneuronas/metabolismo , Inhibición Neural/fisiología , Receptor Muscarínico M2/metabolismo , Tálamo/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Estimulación Eléctrica , Electrofisiología , Cuerpos Geniculados/citología , Cuerpos Geniculados/metabolismo , Hipocampo/citología , Hipocampo/fisiología , Interneuronas/citología , Interneuronas/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Muscarina/farmacología , Agonistas Muscarínicos/farmacología , Inhibición Neural/efectos de los fármacos , Neuronas/metabolismo , Células Ganglionares de la Retina/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
16.
Front Neurosci ; 17: 1154769, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37008233

RESUMEN

Rhythmic behaviors (e.g., walking, breathing, and chewing) are produced by central pattern generator (CPG) circuits. These circuits are highly dynamic due to a multitude of input they receive from hormones, sensory neurons, and modulatory projection neurons. Such inputs not only turn CPG circuits on and off, but they adjust their synaptic and cellular properties to select behaviorally relevant outputs that last from seconds to hours. Similar to the contributions of fully identified connectomes to establishing general principles of circuit function and flexibility, identified modulatory neurons have enabled key insights into neural circuit modulation. For instance, while bath-applying neuromodulators continues to be an important approach to studying neural circuit modulation, this approach does not always mimic the neural circuit response to neuronal release of the same modulator. There is additional complexity in the actions of neuronally-released modulators due to: (1) the prevalence of co-transmitters, (2) local- and long-distance feedback regulating the timing of (co-)release, and (3) differential regulation of co-transmitter release. Identifying the physiological stimuli (e.g., identified sensory neurons) that activate modulatory projection neurons has demonstrated multiple "modulatory codes" for selecting particular circuit outputs. In some cases, population coding occurs, and in others circuit output is determined by the firing pattern and rate of the modulatory projection neurons. The ability to perform electrophysiological recordings and manipulations of small populations of identified neurons at multiple levels of rhythmic motor systems remains an important approach for determining the cellular and synaptic mechanisms underlying the rapid adaptability of rhythmic neural circuits.

17.
J Neurosci ; 29(39): 12355-67, 2009 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-19793994

RESUMEN

The cellular mechanisms underlying comodulation of neuronal networks are not elucidated in most systems. We are addressing this issue by determining the mechanism by which a peptide hormone, crustacean cardioactive peptide (CCAP), modulates the biphasic (protraction/retraction) gastric mill (chewing) rhythm driven by the projection neuron MCN1 in the crab stomatogastric ganglion. MCN1 activates this rhythm by slow peptidergic (CabTRP Ia) and fast GABAergic excitation of the reciprocally inhibitory central pattern generator neurons LG (protraction) and Int1 (retraction), respectively. MCN1 synaptic transmission is limited to the retraction phase, because LG inhibits MCN1 during protraction. Bath-applied CCAP also excites both LG and Int1, but selectively prolongs protraction. Here, we use computational modeling and dynamic-clamp manipulations to establish that CCAP prolongs the gastric mill protractor (LG) phase and maintains the retractor (Int1) phase duration by activating the same modulator-activated inward current (I(MI)) in LG as MCN1-released CabTRP Ia. However, the CCAP-activated current (I(MI-CCAP)) and MCN1-activated current (I(MI-MCN1)) exhibit distinct time courses in LG during protraction. This distinction results from I(MI-CCAP) being regulated only by postsynaptic voltage, whereas I(MI-MCN1) is also regulated by LG presynaptic inhibition of MCN1. Hence, without CCAP, retraction and protraction duration are determined by the time course of I(MI-MCN1) buildup and feedback inhibition-mediated decay, respectively, in LG. With I(MI-CCAP) continually present, the impact of the feedback inhibition is reduced, prolonging protraction and maintaining retraction duration. Thus, comodulation of rhythmic motor activity can result from convergent activation, via distinct dynamics, of a single voltage-dependent current.


Asunto(s)
Actividad Motora/fisiología , Corteza Motora/fisiología , Red Nerviosa/fisiología , Potenciales de Acción/fisiología , Animales , Crustáceos , Inhibición Neural/fisiología
18.
Neuron ; 45(6): 917-28, 2005 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-15797552

RESUMEN

Local interneurons provide feed-forward inhibition from retinal ganglion cells (RGCs) to thalamocortical (TC) neurons, but questions remain regarding the timing, magnitude, and functions of this inhibition. Here, we identify two types of inhibition that are suited to play distinctive roles. We recorded excitatory and inhibitory postsynaptic currents (EPSCs/IPSCs) in TC neurons in mouse brain slices and activated individual RGC inputs. In 34% of TC neurons, we identified EPSCs and IPSCs with identical thresholds that were tightly correlated, indicating activation by the same RGC. Such "locked" IPSCs occurred 1 ms after EPSC onset. The remaining neurons had only "nonlocked" inhibition, in which EPSCs and IPSCs had different thresholds, indicating activation by different RGCs. Nonlocked inhibition may refine receptive fields within the LGN by providing surround inhibition. In contrast, dynamic-clamp recordings suggest that locked inhibition improves the precision of synaptically evoked responses in individual TC neurons by eliminating secondary spikes.


Asunto(s)
Cuerpos Geniculados/fisiología , Interneuronas/fisiología , Inhibición Neural/fisiología , Células Ganglionares de la Retina/fisiología , Transmisión Sináptica/fisiología , Vías Visuales/fisiología , Potenciales de Acción/fisiología , Animales , Potenciales Postsinápticos Excitadores/fisiología , Ratones , Plasticidad Neuronal/fisiología , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Sinapsis/fisiología , Factores de Tiempo , Visión Ocular/fisiología , Campos Visuales/fisiología
19.
J Neurosci ; 28(38): 9564-74, 2008 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-18799688

RESUMEN

Central pattern generators (CPGs) provide feedback to their projection neuron inputs. However, it is unknown whether this feedback is regulated and how that might shape CPG output. We are studying feedback from the pyloric CPG to identified projection neurons that regulate the gastric mill CPG, in the crab stomatogastric nervous system. Both CPGs are located in the stomatogastric ganglion (STG) and are influenced by projection neurons originating in the paired commissural ganglia (CoGs). Two extrinsic inputs [ventral cardiac neurons (VCNs) and postoesophageal commissure (POC) neurons] trigger distinct gastric mill rhythms despite acting via the same projection neurons [modulatory commissural neuron 1 (MCN1); commissural projection neuron 2 (CPN2)]. These projection neurons receive feedback inhibition from the pyloric CPG interneuron anterior burster (AB), resulting in their exhibiting pyloric-timed activity during the retraction phase of the VCN- and POC-triggered gastric mill rhythms. However, during the gastric mill protraction phase, MCN1/CPN2 exhibit pyloric-timed activity during the POC-triggered rhythm but fire tonically during the VCN-triggered rhythm. Here, we show that the latter, tonic activity pattern results from the elimination of AB inhibition of MCN1/CPN2, despite persistent AB actions within the STG and AB action potentials still propagating into each CoG. This loss of pyloric-timed AB input likely results from presynaptic inhibition of AB in each CoG because, when a secondary rhythmic AB burst initiation zone in the CoG is activated, the associated action potentials are selectively suppressed during the VCN protraction phase. Thus, rhythmic CPG feedback can be locally regulated, in a state-dependent manner, enabling the same projection neurons to drive multiple motor patterns from the same neuronal circuit.


Asunto(s)
Braquiuros/fisiología , Sistema Nervioso Central/fisiología , Retroalimentación/fisiología , Ganglios de Invertebrados/fisiología , Inhibición Neural/fisiología , Transmisión Sináptica/fisiología , Potenciales de Acción/fisiología , Animales , Relojes Biológicos/fisiología , Braquiuros/citología , Sistema Nervioso Central/citología , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/fisiología , Ganglios de Invertebrados/citología , Tracto Gastrointestinal/inervación , Tracto Gastrointestinal/fisiología , Interneuronas/citología , Interneuronas/fisiología , Masculino , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Neuronas/citología , Neuronas/fisiología
20.
Neuron ; 33(5): 779-88, 2002 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-11879654

RESUMEN

The retinogeniculate synapse conveys visual information from the retina to thalamic relay neurons. Here, we examine the mechanisms of short-term plasticity that can influence transmission at this connection in mouse brain slices. Our studies show that synaptic strength is modified by physiological activity patterns due to marked depression at high frequencies. Postsynaptic mechanisms of plasticity make prominent contributions to this synaptic depression. During trains of retinal input stimulation, receptor desensitization attenuates the AMPA EPSC while the NMDA EPSC saturates. This differential plasticity may help explain the distinct roles of these receptors in shaping the relay neuron response to visual stimulation with the AMPA component being important for transient responses, while sustained high frequency responses rely more on the NMDA component.


Asunto(s)
Cuerpos Geniculados/fisiología , Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/fisiología , Valina/análogos & derivados , Vías Visuales/fisiología , Animales , Benzotiadiazinas/farmacología , Compuestos de Bifenilo/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Cuerpos Geniculados/citología , Cuerpos Geniculados/efectos de los fármacos , Técnicas In Vitro , Ratones , Técnicas de Placa-Clamp , Propionatos/farmacología , Valina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA