Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Environ Res ; 236(Pt 1): 116704, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37481053

RESUMEN

Climate change and air pollution are closely interlinked since carbon dioxide and air pollutants are co-emitted from fossil fuel combustion. Net Zero (NZ) policies aiming to reduce carbon emissions will likely bring co-benefits in air quality and associated health. However, it is unknown whether regional NZ policies alone will be sufficient to reduce air pollutant levels to meet the latest 2021 World Health Organisation (WHO) guidelines. Here, we carried out high resolution air quality modelling for in the West Midlands region, a typical metropolitan area in the UK, to quantify the effects of different NZ policies on air quality. Results show that NZ policies will significantly improve air quality in the West Midlands, with up to 6 µg m-3 (21%) reduction in annual mean NO2 (mostly through the electrification of vehicle fleet, EV) and up to 1.4 µg m-3 (12%) reduction in annual mean PM2.5 projected for 2030 relative to levels under a "business as usual" (BAU) scenario. Under BAU, 2030 PM2.5 concentrations in most wards would be below 10 µg m-3 whilst under the Net Zero scenario, those in all wards would be below 10 µg m-3. This means that the ward averages in the West Midlands would meet the UK PM2.5 of 10 µg m-3target a decade early under the Net Zero scenario. However, no ward-level-averaged annual mean PM2.concentrations meet the 2021 WHO Air Quality guideline level of 5 µg m-3 under any scenario. Similarly for NO2 only 18 wards (8% of the region's population) are predicted to have NO2 concentrations below the 2021 WHO guideline level (10 µg m-3). Decarbonisation policies linked to Net Zero deliver substantial regional air quality benefits, but are not in isolation sufficient to deliver clean air with air pollutant levels low enough to meet the 2021 WHO guidelines.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Material Particulado/análisis , Dióxido de Nitrógeno/análisis , Contaminación del Aire/prevención & control , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Reino Unido , Monitoreo del Ambiente/métodos
2.
Faraday Discuss ; 226: 223-238, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33283833

RESUMEN

Wintertime urban air pollution in many global megacities is characterised by episodic rapid increase in particulate matter concentrations associated with elevated relative humidity - so-called haze episodes, which have become characteristic of cities such as Beijing. Atmospheric chemistry within haze combines gas- and condensed-phase chemical processes, leading to the growth in secondary species such as sulphate aerosols. Here, we integrate observations of reactive gas phase species (HONO, OH, NOx) and time-resolved aerosol composition, to explore observational constraints on the mechanisms responsible for sulphate growth during the onset of haze events. We show that HONO abundance is dominated by established fast gas-phase photochemistry, but the consideration of the additional formation potentially associated with condensed-phase oxidation of S species by aqueous NO2 leading to NO2- production and hence HONO release, improves agreement between observed and calculated gas-phase HONO levels. This conclusion is highly dependent upon aerosol pH, ionic strength and particularly the parameterisation employed for S(iv) oxidation kinetics, for which an upper limit is derived.

3.
Faraday Discuss ; 189: 191-212, 2016 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-27105044

RESUMEN

A substantial body of recent literature has shown that boundary layer HONO levels are higher than can be explained by simple, established gas-phase chemistry, to an extent that implies that additional HONO sources represent a major, or the dominant, precursor to OH radicals in such environments. This conclusion may be reached by analysis of point observations of (for example) OH, NO and HONO, alongside photochemical parameters; however both NO and HONO have non-negligible atmospheric lifetimes, so these approaches may be problematic if substantial spatial heterogeneity exists. We report a new dataset of HONO, NOx and HOx observations recorded at an urban background location, which support the existence of additional HONO sources as determined elsewhere. We qualitatively evaluate the possible impacts of local heterogeneity using a series of idealised numerical model simulations, building upon the work of Lee et al. (J. Geophys. Res., 2013, DOI: 10.1002/2013JD020341). The simulations illustrate the time required for photostationary state approaches to yield accurate results following substantial perturbations in the HOx/NOx/NOy chemistry, and the scope for bias to an inferred HONO source from NOx and VOC emissions in either a positive or negative sense, depending upon the air mass age following emission. To assess the extent to which these impacts may be present in actual measurements, we present exploratory spatially resolved measurements of HONO and NOx abundance obtained using a mobile instrumented laboratory. Measurements of the spatial variability of HONO in urban, suburban and rural environments show pronounced changes in abundance are found in proximity to major roads within urban areas, indicating that photo-stationary steady state (PSS) analyses in such areas are likely to be problematic. The measurements also show areas of very homogeneous HONO and NOx abundance in rural, and some suburban, regions, where the PSS approach is likely to be valid. Implications for future exploration of HONO production mechanisms are discussed.

9.
Environ Sci Technol ; 49(22): 13168-78, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26473383

RESUMEN

Secondary organic aerosol (SOA) is well-known to have adverse effects on air quality and human health. However, the dynamic mechanisms occurring during SOA formation and evolution are poorly understood. The time-resolved SOA composition formed during the photo-oxidation of three aromatic compounds, methyl chavicol, toluene and 4-methyl catechol, were investigated at the European Photoreactor. SOA was collected using a particle into liquid sampler and analyzed offline using state-of-the-art mass spectrometry to produce temporal profiles of individual photo-oxidation products. In the photo-oxidation of methyl chavicol, 70 individual compounds were characterized and three distinctive temporal profile shapes were observed. The calculated mass fraction (Ci,aer/COA) of the individual SOA compounds showed either a linear trend (increasing/decreasing) or exponential decay with time. Substituted nitrophenols showed an exponential decay, with the nitro-group on the aromatic ring found to control the formation and loss of these species in the aerosol phase. Nitrophenols from both methyl chavicol and toluene photo-oxidation experiments showed a strong relationship with the NO2/NO (ppbv/ppbv) ratio and were observed during initial SOA growth. The location of the nitrophenol aromatic substitutions was found to be critically important, with the nitrophenol in the photo-oxidation of 4-methyl catechol not partitioning into the aerosol phase until irradiation had stopped; highlighting the importance of studying SOA formation and evolution at a molecular level.


Asunto(s)
Hidrocarburos Aromáticos/química , Luz , Material Particulado/análisis , Derivados de Alilbenceno , Anisoles/química , Atmósfera/química , Humedad , Nitrofenoles/análisis , Oxidantes/química , Oxidación-Reducción/efectos de la radiación , Temperatura , Factores de Tiempo , Tolueno/química , Compuestos Orgánicos Volátiles/análisis
10.
Phys Chem Chem Phys ; 17(6): 4076-88, 2015 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-25562069

RESUMEN

The removal of SO2 in the presence of alkene-ozone systems has been studied for ethene, cis-but-2-ene, trans-but-2-ene and 2,3-dimethyl-but-2-ene, as a function of humidity, under atmospheric boundary layer conditions. The SO2 removal displays a clear dependence on relative humidity for all four alkene-ozone systems confirming a significant reaction for stabilised Criegee intermediates (SCI) with H2O. The observed SO2 removal kinetics are consistent with relative rate constants, k(SCI + H2O)/k(SCI + SO2), of 3.3 (±1.1) × 10(-5) for CH2OO, 26 (±10) × 10(-5) for CH3CHOO derived from cis-but-2-ene, 33 (±10) × 10(-5) for CH3CHOO derived from trans-but-2-ene, and 8.7 (±2.5) × 10(-5) for (CH3)2COO derived from 2,3-dimethyl-but-2-ene. The relative rate constants for k(SCI decomposition)/k(SCI + SO2) are -2.3 (±3.5) × 10(11) cm(-3) for CH2OO, 13 (±43) × 10(11) cm(-3) for CH3CHOO derived from cis-but-2-ene, -14 (±31) × 10(11) cm(-3) for CH3CHOO derived from trans-but-2-ene and 63 (±14) × 10(11) cm(-3) for (CH3)2COO. Uncertainties are ±2σ and represent combined systematic and precision components. These values are derived following the approximation that a single SCI is present for each system; a more comprehensive interpretation, explicitly considering the differing reactivity for syn- and anti-SCI conformers, is also presented. This yields values of 3.5 (±3.1) × 10(-4) for k(SCI + H2O)/k(SCI + SO2) of anti-CH3CHOO and 1.2 (±1.1) × 10(13) for k(SCI decomposition)/k(SCI + SO2) of syn-CH3CHOO. The reaction of the water dimer with CH2OO is also considered, with a derived value for k(CH2OO + (H2O)2)/k(CH2OO + SO2) of 1.4 (±1.8) × 10(-2). The observed SO2 removal rate constants, which technically represent upper limits, are consistent with decomposition being a significant, structure dependent, sink in the atmosphere for syn-SCI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA