Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
PLoS Genet ; 16(12): e1009162, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33315856

RESUMEN

Gene expression programs determine cell fate in embryonic development and their dysregulation results in disease. Transcription factors (TFs) control gene expression by binding to enhancers, but how TFs select and activate their target enhancers is still unclear. HOX TFs share conserved homeodomains with highly similar sequence recognition properties, yet they impart the identity of different animal body parts. To understand how HOX TFs control their specific transcriptional programs in vivo, we compared HOXA2 and HOXA3 binding profiles in the mouse embryo. HOXA2 and HOXA3 directly cooperate with TALE TFs and selectively target different subsets of a broad TALE chromatin platform. Binding of HOX and tissue-specific TFs convert low affinity TALE binding into high confidence, tissue-specific binding events, which bear the mark of active enhancers. We propose that HOX paralogs, alone and in combination with tissue-specific TFs, generate tissue-specific transcriptional outputs by modulating the activity of TALE TFs at selected enhancers.


Asunto(s)
Elementos de Facilitación Genéticos , Proteínas de Homeodominio/metabolismo , Secuencias de Aminoácidos , Animales , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Ratones , Especificidad de Órganos , Unión Proteica , Factores de Transcripción/metabolismo , Activación Transcripcional , Pez Cebra
2.
Nucleic Acids Res ; 48(5): e27, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31974574

RESUMEN

Transcription factors (TFs) can bind DNA in a cooperative manner, enabling a mutual increase in occupancy. Through this type of interaction, alternative binding sites can be preferentially bound in different tissues to regulate tissue-specific expression programmes. Recently, deep learning models have become state-of-the-art in various pattern analysis tasks, including applications in the field of genomics. We therefore investigate the application of convolutional neural network (CNN) models to the discovery of sequence features determining cooperative and differential TF binding across tissues. We analyse ChIP-seq data from MEIS, TFs which are broadly expressed across mouse branchial arches, and HOXA2, which is expressed in the second and more posterior branchial arches. By developing models predictive of MEIS differential binding in all three tissues, we are able to accurately predict HOXA2 co-binding sites. We evaluate transfer-like and multitask approaches to regularizing the high-dimensional classification task with a larger regression dataset, allowing for the creation of deeper and more accurate models. We test the performance of perturbation and gradient-based attribution methods in identifying the HOXA2 sites from differential MEIS data. Our results show that deep regularized models significantly outperform shallow CNNs as well as k-mer methods in the discovery of tissue-specific sites bound in vivo.


Asunto(s)
Región Branquial/metabolismo , Aprendizaje Profundo , Proteínas de Homeodominio/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , ARN/genética , Animales , Sitios de Unión , Región Branquial/crecimiento & desarrollo , Inmunoprecipitación de Cromatina , Biología Computacional/métodos , Biología Computacional/estadística & datos numéricos , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Homeodominio/metabolismo , Ratones , Modelos Genéticos , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Especificidad de Órganos , Distribución de Poisson , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN/metabolismo
3.
Dev Biol ; 459(2): 161-180, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31862379

RESUMEN

Animal embryogenesis is initiated by maternal factors, but zygotic genome activation (ZGA) shifts regulatory control to the embryo during blastula stages. ZGA is thought to be mediated by maternally provided transcription factors (TFs), but few such TFs have been identified in vertebrates. Here we report that NF-Y and TALE TFs bind zebrafish genomic elements associated with developmental control genes already at ZGA. In particular, co-regulation by NF-Y and TALE is associated with broadly acting genes involved in transcriptional control, while regulation by either NF-Y or TALE defines genes in specific developmental processes, such that NF-Y controls a cilia gene expression program while TALE controls expression of hox genes. We also demonstrate that NF-Y and TALE-occupied genomic elements function as enhancers during embryogenesis. We conclude that combinatorial use of NF-Y and TALE at developmental enhancers permits the establishment of distinct gene expression programs at zebrafish ZGA.


Asunto(s)
Factor de Unión a CCAAT/metabolismo , Expresión Génica , Genoma , Proteínas de Homeodominio/metabolismo , Activación Transcripcional , Pez Cebra/embriología , Cigoto/metabolismo , Animales , Cilios/genética , Desarrollo Embrionario/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Masculino , Proteínas de Pez Cebra
4.
Development ; 143(14): 2582-92, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27287804

RESUMEN

Hmx1 encodes a homeodomain transcription factor expressed in the developing lateral craniofacial mesenchyme, retina and sensory ganglia. Mutation or mis-regulation of Hmx1 underlies malformations of the eye and external ear in multiple species. Deletion or insertional duplication of an evolutionarily conserved region (ECR) downstream of Hmx1 has recently been described in rat and cow, respectively. Here, we demonstrate that the impact of Hmx1 loss is greater than previously appreciated, with a variety of lateral cranioskeletal defects, auriculofacial nerve deficits, and duplication of the caudal region of the external ear. Using a transgenic approach, we demonstrate that a 594 bp sequence encompassing the ECR recapitulates specific aspects of the endogenous Hmx1 lateral facial expression pattern. Moreover, we show that Hoxa2, Meis and Pbx proteins act cooperatively on the ECR, via a core 32 bp sequence, to regulate Hmx1 expression. These studies highlight the conserved role for Hmx1 in BA2-derived tissues and provide an entry point for improved understanding of the causes of the frequent lateral facial birth defects in humans.


Asunto(s)
Emparejamiento Base/genética , Pabellón Auricular/metabolismo , Evolución Molecular , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Morfogénesis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Secuencia Conservada/genética , Anomalías Craneofaciales/genética , Pabellón Auricular/anomalías , Pabellón Auricular/patología , Elementos de Facilitación Genéticos/genética , Cara/embriología , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Ratones Mutantes , Ratones Transgénicos , Especificidad de Órganos/genética , Estimulación Física , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Unión Proteica/genética , Células Receptoras Sensoriales/patología
5.
Development ; 140(21): 4386-97, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24067355

RESUMEN

External ear abnormalities are frequent in newborns ranging from microtia to partial auricle duplication. Little is known about the molecular mechanisms orchestrating external ear morphogenesis. In humans, HOXA2 partial loss of function induces a bilateral microtia associated with an abnormal shape of the auricle. In mice, Hoxa2 inactivation at early gestational stages results in external auditory canal (EAC) duplication and absence of the auricle, whereas its late inactivation results in a hypomorphic auricle, mimicking the human HOXA2 mutant condition. By genetic fate mapping we found that the mouse auricle (or pinna) derives from the Hoxa2-expressing neural crest-derived mesenchyme of the second pharyngeal arch, and not from a composite of first and second arch mesenchyme as previously proposed based on morphological observation of human embryos. Moreover, the mouse EAC is entirely lined by Hoxa2-negative first arch mesenchyme and does not develop at the first pharyngeal cleft, as previously assumed. Conditional ectopic Hoxa2 expression in first arch neural crest is sufficient to induce a complete duplication of the pinna and a loss of the EAC, suggesting transformation of the first arch neural crest-derived mesenchyme lining the EAC into an ectopic pinna. Hoxa2 partly controls the morphogenesis of the pinna through the BMP signalling pathway and expression of Eya1, which in humans is involved in branchio-oto-renal syndrome. Thus, Hoxa2 loss- and gain-of-function approaches in mice provide a suitable model to investigate the molecular aetiology of microtia and auricle duplication.


Asunto(s)
Anomalías Congénitas/genética , Pabellón Auricular/anomalías , Conducto Auditivo Externo/anomalías , Oído/anomalías , Proteínas de Homeodominio/genética , Morfogénesis/fisiología , Transducción de Señal/fisiología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Inmunoprecipitación de Cromatina , Microtia Congénita , Pabellón Auricular/embriología , Conducto Auditivo Externo/embriología , Inmunohistoquímica , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mesodermo/citología , Ratones , Morfogénesis/genética , Mutación/genética , Cresta Neural/citología , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Tamoxifeno/administración & dosificación
6.
Stem Cells ; 32(11): 2869-79, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25074424

RESUMEN

Mouse embryonic stem cells (mESCs) and epiblast stem cells represent the naïve and primed pluripotent states, respectively. These cells self-renew via distinct signaling pathways and can transition between the two states in the presence of appropriate growth factors. Manipulation of signaling pathways has therefore allowed the isolation of novel pluripotent cell types such as Fibroblast growth factor, Activin and BIO-derived stem cells and IESCs. However, the effect of cell seeding density on pluripotency remains unexplored. In this study, we have examined whether mESCs can epigenetically regulate E-cadherin to enter a primed-like state in response to low cell seeding density. We show that low density seeding in the absence of leukaemia inhibitory factor (LIF) induces decreased apoptosis and maintenance of pluripotency via Activin/Nodal, concomitant with loss of E-cadherin, Signal transducer and activator of transcription phosphorylation, and chimera-forming ability. These cells, E-cadherin negative proliferating stem cells (ENPSCs) can be reverted to a naïve phenotype by addition of LIF or forced E-cadherin expression. However, prolonged culture of ENPSCs without LIF leads to methylation of the E-cadherin promoter (ENPSC(M)), which cannot be reversed by LIF supplementation, and increased histone H3K27 and decreased H3K4 trimethylation. Transcript analysis of ENPSC(M) revealed a primed-like phenotype and their differentiation leads to enrichment of neuroectoderm cells. The generation of ENPSCs is similar to tumorigenesis as ENPSCs exhibit transcript alterations associated with neoplasia, hyperplasia, carcinoma, and metastasis. We therefore describe a novel cell model to elucidate the role of E-cadherin in pluripotency and to investigate epigenetic regulation of this gene during mESC differentiation and tumor metastasis.


Asunto(s)
Cadherinas/metabolismo , Diferenciación Celular/fisiología , Metilación de ADN , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes/citología , Regiones Promotoras Genéticas , Transducción de Señal/fisiología , Animales , Separación Celular , Células Cultivadas , Epigénesis Genética/efectos de los fármacos , Humanos , Factor Inhibidor de Leucemia/metabolismo , Ratones de la Cepa 129 , Células Madre Pluripotentes/metabolismo
7.
Nucleic Acids Res ; 40(9): 3990-4001, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22223247

RESUMEN

The regulation of gene expression is central to developmental programs and largely depends on the binding of sequence-specific transcription factors with cis-regulatory elements in the genome. Hox transcription factors specify the spatial coordinates of the body axis in all animals with bilateral symmetry, but a detailed knowledge of their molecular function in instructing cell fates is lacking. Here, we used chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq) to identify Hoxa2 genomic locations in a time and space when it is actively instructing embryonic development in mouse. Our data reveals that Hoxa2 has large genome coverage and potentially regulates thousands of genes. Sequence analysis of Hoxa2-bound regions identifies high occurrence of two main classes of motifs, corresponding to Hox and Pbx-Hox recognition sequences. Examination of the binding targets of Hoxa2 faithfully captures the processes regulated by Hoxa2 during embryonic development; in addition, it uncovers a large cluster of potential targets involved in the Wnt-signaling pathway. In vivo examination of canonical Wnt-ß-catenin signaling reveals activity specifically in Hoxa2 domain of expression, and this is undetectable in Hoxa2 mutant embryos. The comprehensive mapping of Hoxa2-binding sites provides a framework to study Hox regulatory networks in vertebrate developmental processes.


Asunto(s)
Desarrollo Embrionario/genética , Proteínas de Homeodominio/metabolismo , Vía de Señalización Wnt/genética , Animales , Sitios de Unión , Región Branquial/metabolismo , Inmunoprecipitación de Cromatina , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Homeodominio/genética , Ratones , Análisis de Secuencia de ADN , beta Catenina/metabolismo
8.
Hepatology ; 56(3): 1108-16, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22488688

RESUMEN

UNLABELLED: Osteopontin (OPN) is an important component of the extracellular matrix (ECM), which promotes liver fibrosis and has been described as a biomarker for its severity. Previously, we have demonstrated that Sex-determining region Y-box 9 (SOX9) is ectopically expressed during activation of hepatic stellate cells (HSC) when it is responsible for the production of type 1 collagen, which causes scar formation in liver fibrosis. Here, we demonstrate that SOX9 regulates OPN. During normal development and in the mature liver, SOX9 and OPN are coexpressed in the biliary duct. In rodent and human models of fibrosis, both proteins were increased and colocalized to fibrotic regions in vivo and in culture-activated HSCs. SOX9 bound a conserved upstream region of the OPN gene, and abrogation of Sox9 in HSCs significantly decreased OPN production. Hedgehog (Hh) signaling has previously been shown to regulate OPN expression directly by glioblastoma (GLI) 1. Our data indicate that in models of liver fibrosis, Hh signaling more likely acts through SOX9 to modulate OPN. In contrast to Gli2 and Gli3, Gli1 is sparse in HSCs and is not increased upon activation. Furthermore, reduction of GLI2, but not GLI3, decreased the expression of both SOX9 and OPN, whereas overexpressing SOX9 or constitutively active GLI2 could rescue the antagonistic effects of cyclopamine on OPN expression. CONCLUSION: These data reinforce SOX9, downstream of Hh signaling, as a core factor mediating the expression of ECM components involved in liver fibrosis. Understanding the role and regulation of SOX9 during liver fibrosis will provide insight into its potential modulation as an antifibrotic therapy or as a means of identifying potential ECM targets, similar to OPN, as biomarkers of fibrosis.


Asunto(s)
Cirrosis Hepática/diagnóstico , Cirrosis Hepática/etiología , Osteopontina/fisiología , Factor de Transcripción SOX9/fisiología , Animales , Progresión de la Enfermedad , Humanos , Masculino , Osteopontina/biosíntesis , Ratas , Ratas Sprague-Dawley , Factor de Transcripción SOX9/biosíntesis
9.
Nat Commun ; 14(1): 3993, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37414772

RESUMEN

A lingering question in developmental biology has centered on how transcription factors with widespread distribution in vertebrate embryos can perform tissue-specific functions. Here, using the murine hindlimb as a model, we investigate the elusive mechanisms whereby PBX TALE homeoproteins, viewed primarily as HOX cofactors, attain context-specific developmental roles despite ubiquitous presence in the embryo. We first demonstrate that mesenchymal-specific loss of PBX1/2 or the transcriptional regulator HAND2 generates similar limb phenotypes. By combining tissue-specific and temporally controlled mutagenesis with multi-omics approaches, we reconstruct a gene regulatory network (GRN) at organismal-level resolution that is collaboratively directed by PBX1/2 and HAND2 interactions in subsets of posterior hindlimb mesenchymal cells. Genome-wide profiling of PBX1 binding across multiple embryonic tissues further reveals that HAND2 interacts with subsets of PBX-bound regions to regulate limb-specific GRNs. Our research elucidates fundamental principles by which promiscuous transcription factors cooperate with cofactors that display domain-restricted localization to instruct tissue-specific developmental programs.


Asunto(s)
Redes Reguladoras de Genes , Factores de Transcripción , Animales , Ratones , Proteínas de Homeodominio/metabolismo , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Dev Biol ; 344(2): 720-30, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20515681

RESUMEN

The cranial base is essential for integrated craniofacial development and growth. It develops as a cartilaginous template that is replaced by bone through the process of endochondral ossification. Here, we describe a novel and specific role for the homeoprotein Six2 in the growth and elongation of the cranial base. Six2-null newborn mice display premature fusion of the bones in the cranial base. Chondrocyte differentiation is abnormal in the Six2-null cranial base, with reduced proliferation and increased terminal differentiation. Gain-of-function experiments indicate that Six2 promotes cartilage development and growth in other body areas and appears therefore to control general regulators of chondrocyte differentiation. Our data indicate that the main factors restricting Six2 function to the cranial base are tissue-specific transcription of the gene and compensatory effects of other Six family members. The comparable expression during human embryogenesis and the high protein conservation from mouse to human implicate SIX2 loss-of-function as a potential congenital cause of anterior cranial base defects in humans.


Asunto(s)
Base del Cráneo/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Huesos , Cartílago/crecimiento & desarrollo , Cartílago/metabolismo , Diferenciación Celular , Condrogénesis , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas del Tejido Nervioso , Osteogénesis/fisiología , Proteínas/metabolismo
11.
Differentiation ; 79(3): 194-202, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20034726

RESUMEN

Hox genes control morphogenesis along the antero-posterior axis. The skeleton of vertebrates offers an exemplar readout of their activity: Hox genes control the morphology of the skeleton by defining type of vertebrae, and structure of the limbs. The head skeleton of vertebrates is formed by cranial neural crest (CNC), and mainly by a Hox-free domain of the CNC. Ectopic expression of anterior Hox genes in the CNC prevents the formation of the facial skeleton. These inhibitory effects on skeletogenesis are at odds with the recognized function of Hox genes in patterning the developing skeleton. To clarify these controversial effects, we overexpressed Hoxa2 across the entire developing endochondral skeleton in mouse. This gave rise to strong and spatially restricted effects: the most noticeable abnormalities were detected in the cranial base and consisted in a failure of bones to form or in a transformed morphology of bones. The rest of the skeleton exhibited milder defects, which never consisted in the absence or the transformation of any skeletal components. Analyses at early stages of endochondral bone development showed disorganized cell condensations in the cranial base of Col2a1-Hoxa2 transgenic embryos. We show that the distribution of Hoxa2-positive cells in Col2a1-Hoxa2 embryos does not match the wild-type developing cartilages. The Hoxa2-positive cells detected in atypical, non-chondrogenic location in the cranial base, remain as chondrocytes and lay down cartilage, indicating that Hoxa2 does not alter the fate of chondrocytes, but interferes with their spatial distribution. We propose that the ability of Hoxa2 to change the spatial distribution of cells accounts for the different phenotypes observed in Col2a1-Hoxa2 embryos; it also provides an explanation for the apparent inconsistency between the inhibitory effects of Hoxa2 on skeletal development, and the ability of Hox genes to establish the morphology of the vertebrate skeleton.


Asunto(s)
Condrocitos/citología , Genes Homeobox/genética , Cresta Neural/citología , Animales , Huesos/metabolismo , Cartílago/metabolismo , Condrocitos/metabolismo , Cara/embriología , Ratones , Ratones Transgénicos , Morfogénesis/genética , Sistema Musculoesquelético/metabolismo , Cresta Neural/metabolismo , Cráneo/metabolismo
12.
J Dev Biol ; 9(4)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34940502

RESUMEN

The highly conserved HOX homeodomain (HD) transcription factors (TFs) establish the identity of different body parts along the antero-posterior axis of bilaterian animals. Segment diversification and the morphogenesis of different structures is achieved by generating precise patterns of HOX expression along the antero-posterior axis and by the ability of different HOX TFs to instruct unique and specific transcriptional programs. However, HOX binding properties in vitro, characterised by the recognition of similar AT-rich binding sequences, do not account for the ability of different HOX to instruct segment-specific transcriptional programs. To address this problem, we previously compared HOXA2 and HOXA3 binding in vivo. Here, we explore if sequence motif enrichments observed in vivo are explained by binding affinities in vitro. Unexpectedly, we found that the highest enriched motif in HOXA2 peaks was not recognised by HOXA2 in vitro, highlighting the importance of investigating HOX binding in its physiological context. We also report the ability of HOXA2 and HOXA3 to heterodimerise, which may have functional consequences for the HOX patterning function in vivo.

13.
Oncogene ; 40(5): 875-884, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33262459

RESUMEN

Meningiomas are the most common primary brain tumor and their incidence and prevalence is increasing. This review summarizes current evidence regarding the embryogenesis of the human meninges in the context of meningioma pathogenesis and anatomical distribution. Though not mutually exclusive, chromosomal instability and pathogenic variants affecting the long arm of chromosome 22 (22q) result in meningiomas in neural-crest cell-derived meninges, while variants affecting Hedgehog signaling, PI3K signaling, TRAF7, KLF4, and POLR2A result in meningiomas in the mesodermal-derived meninges of the midline and paramedian anterior, central, and ventral posterior skull base. Current evidence regarding the common pathways for genetic pathogenesis and the anatomical distribution of meningiomas is presented alongside existing understanding of the embryological origins for the meninges prior to proposing next steps for this work.


Asunto(s)
Proteínas Hedgehog/genética , Factores de Transcripción de Tipo Kruppel/genética , Neoplasias Meníngeas/genética , Meningioma/genética , Genotipo , Humanos , Factor 4 Similar a Kruppel , Neoplasias Meníngeas/patología , Meningioma/patología , Mutación/genética , Fenotipo , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/genética
14.
Stem Cells ; 27(9): 2069-80, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19544408

RESUMEN

We have previously demonstrated that differentiation of embryonic stem (ES) cells is associated with downregulation of cell surface E-cadherin. In this study, we assessed the function of E-cadherin in mouse ES cell pluripotency and differentiation. We show that inhibition of E-cadherin-mediated cell-cell contact in ES cells using gene knockout (Ecad(-/-)), RNA interference (EcadRNAi), or a transhomodimerization-inhibiting peptide (CHAVC) results in cellular proliferation and maintenance of an undifferentiated phenotype in fetal bovine serum-supplemented medium in the absence of leukemia inhibitory factor (LIF). Re-expression of E-cadherin in Ecad(-/-), EcadRNAi, and CHAVC-treated ES cells restores cellular dependence to LIF supplementation. Although reversal of the LIF-independent phenotype in Ecad(-/-) ES cells is dependent on the beta-catenin binding domain of E-cadherin, we show that beta-catenin null (betacat(-/-)) ES cells also remain undifferentiated in the absence of LIF. This suggests that LIF-independent self-renewal of Ecad(-/-) ES cells is unlikely to be via beta-catenin signaling. Exposure of Ecad(-/-), EcadRNAi, and CHAVC-treated ES cells to the activin receptor-like kinase inhibitor SB431542 led to differentiation of the cells, which could be prevented by re-expression of E-cadherin. To confirm the role of transforming growth factor beta family signaling in the self-renewal of Ecad(-/-) ES cells, we show that these cells maintain an undifferentiated phenotype when cultured in serum-free medium supplemented with Activin A and Nodal, with fibroblast growth factor 2 required for cellular proliferation. We conclude that transhomodimerization of E-cadherin protein is required for LIF-dependent ES cell self-renewal and that multiple self-renewal signaling networks subsist in ES cells, with activity dependent upon the cellular context.


Asunto(s)
Cadherinas/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Factor Inhibidor de Leucemia/farmacología , Activinas/farmacología , Animales , Cadherinas/genética , Cadherinas/metabolismo , Bovinos , Comunicación Celular/efectos de los fármacos , Comunicación Celular/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Células Madre Embrionarias/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/farmacología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Ratones , Proteína Nodal/farmacología , Multimerización de Proteína/genética , Multimerización de Proteína/fisiología , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , beta Catenina/genética , beta Catenina/metabolismo , beta Catenina/fisiología
15.
Nat Commun ; 11(1): 3920, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764605

RESUMEN

How the genome activates or silences transcriptional programmes governs organ formation. Little is known in human embryos undermining our ability to benchmark the fidelity of stem cell differentiation or cell programming, or interpret the pathogenicity of noncoding variation. Here, we study histone modifications across thirteen tissues during human organogenesis. We integrate the data with transcription to build an overview of how the human genome differentially regulates alternative organ fates including by repression. Promoters from nearly 20,000 genes partition into discrete states. Key developmental gene sets are actively repressed outside of the appropriate organ without obvious bivalency. Candidate enhancers, functional in zebrafish, allow imputation of tissue-specific and shared patterns of transcription factor binding. Overlaying more than 700 noncoding mutations from patients with developmental disorders allows correlation to unanticipated target genes. Taken together, the data provide a comprehensive genomic framework for investigating normal and abnormal human development.


Asunto(s)
Discapacidades del Desarrollo/genética , Epigénesis Genética , Organogénesis/genética , Animales , Animales Modificados Genéticamente , Bases de Datos Genéticas , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Código de Histonas/genética , Humanos , Modelos Genéticos , Mutación , Organogénesis/fisiología , Regiones Promotoras Genéticas , Distribución Tisular , Factores de Transcripción/metabolismo , Pez Cebra/embriología , Pez Cebra/genética
16.
Genesis ; 46(1): 52-9, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18196601

RESUMEN

Six known proteins bind to the insulin-like growth factor (IGF) with high affinity. Igfbp5 encodes one of these proteins, which regulates the activity of IGF, but also exerts IGF-independent actions. Using in situ hybridization to detect cells expressing Igfbp5 mRNA, we show that Igfbp5 is expressed in a dynamic pattern in the mouse embryonic craniofacial region. At early stages corresponding to the completion of neural crest migration, Igfbp5 mRNA was found predominantly in the epithelia, whereas when the craniofacial mesenchyme has begun its differentiation into skeletal tissue, Igfbp5-expressing cells surrounded the developing cartilages and bones. Embryos transgenically expressing Igfbp5 in restricted areas of the mesenchyme fated to form craniofacial bones revealed decreased ossification and even deletion of head bones areas. Transgenic expression of a mutant Igfbp5, encoding a product with reduced binding affinity for IGF, led to no skeletal abnormalities, suggesting that the observed negative effects on skeletal development rely on a mechanism that depends on binding to IGF.


Asunto(s)
Huesos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/fisiología , Cráneo/embriología , Animales , Hibridación in Situ , Ratones , Ratones Transgénicos , Modelos Biológicos , Fenotipo , ARN Mensajero/metabolismo , Cráneo/metabolismo , Somatomedinas/metabolismo , Factores de Tiempo , Transgenes
17.
Elife ; 72018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29911973

RESUMEN

TALE factors are broadly expressed embryonically and known to function in complexes with transcription factors (TFs) like Hox proteins at gastrula/segmentation stages, but it is unclear if such generally expressed factors act by the same mechanism throughout embryogenesis. We identify a TALE-dependent gene regulatory network (GRN) required for anterior development and detect TALE occupancy associated with this GRN throughout embryogenesis. At blastula stages, we uncover a novel functional mode for TALE factors, where they occupy genomic DECA motifs with nearby NF-Y sites. We demonstrate that TALE and NF-Y form complexes and regulate chromatin state at genes of this GRN. At segmentation stages, GRN-associated TALE occupancy expands to include HEXA motifs near PBX:HOX sites. Hence, TALE factors control a key GRN, but utilize distinct DNA motifs and protein partners at different stages - a strategy that may also explain their oncogenic potential and may be employed by other broadly expressed TFs.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genes Esenciales/genética , Proteínas de Homeodominio/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Blástula/embriología , Blástula/metabolismo , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/metabolismo , Técnicas de Silenciamiento del Gen , Redes Reguladoras de Genes , Proteínas de Homeodominio/metabolismo , Unión Proteica , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
18.
J Cell Biol ; 216(9): 2603-2605, 2017 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-28801318

RESUMEN

How transcription factors (TFs) control enhancer and promoter functions to effect changes in gene expression is an important question. In this issue, Hau et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201701154) show that the TALE TF MEIS recruits the histone modifier PARP1/ARTD1 at promoters to decompact chromatin and activate transcription.


Asunto(s)
Factores de Transcripción/genética , Activación Transcripcional , Cromatina , ADN , Regiones Promotoras Genéticas
19.
Curr Opin Genet Dev ; 43: 1-8, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27768937

RESUMEN

Homeodomain proteins are evolutionary conserved proteins present in the entire eukaryote kingdom. They execute functions that are essential for life, both in developing and adult organisms. Most homeodomain proteins act as transcription factors and bind DNA to control the activity of other genes. In contrast to their similar DNA binding specificity, homeodomain proteins execute highly diverse and context-dependent functions. Several factors, including genome accessibility, DNA shape, combinatorial binding and the ability to interact with many transcriptional partners, diversify the activity of homeodomain proteins and culminate in the activation of highly dynamic, context-specific transcriptional programs. Clarifying how homeodomain transcription factors work is central to our understanding of development, disease and evolution.


Asunto(s)
Proteínas de Unión al ADN/genética , ADN/genética , Proteínas de Homeodominio/genética , Transcripción Genética , Secuencia de Aminoácidos/genética , Sitios de Unión/genética , Eucariontes/genética , Humanos
20.
Stem Cell Reports ; 9(5): 1387-1394, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29056335

RESUMEN

To interrogate the alternative fates of pancreas and liver in the earliest stages of human organogenesis, we developed laser capture, RNA amplification, and computational analysis of deep sequencing. Pancreas-enriched gene expression was less conserved between human and mouse than for liver. The dorsal pancreatic bud was enriched for components of Notch, Wnt, BMP, and FGF signaling, almost all genes known to cause pancreatic agenesis or hypoplasia, and over 30 unexplored transcription factors. SOX9 and RORA were imputed as key regulators in pancreas compared with EP300, HNF4A, and FOXA family members in liver. Analyses implied that current in vitro human stem cell differentiation follows a dorsal rather than a ventral pancreatic program and pointed to additional factors for hepatic differentiation. In summary, we provide the transcriptional codes regulating the start of human liver and pancreas development to facilitate stem cell research and clinical interpretation without inter-species extrapolation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Hígado/embriología , Páncreas/embriología , Activación Transcripcional , Transcriptoma , Diferenciación Celular , Perfilación de la Expresión Génica , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Hígado/metabolismo , Páncreas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA