Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(1): e2211832120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36577061

RESUMEN

Androgen receptor (AR) and its splice variants (AR-SVs) promote prostate cancer (PCa) growth by orchestrating transcriptional reprogramming. Mechanisms by which the low complexity and intrinsically disordered primary transactivation domain (AF-1) of AR and AR-SVs regulate transcriptional programming in PCa remains poorly defined. Using omics, live and fixed fluorescent microscopy of cells, and purified AF-1 and AR-V7 recombinant proteins we show here that AF-1 and the AR-V7 splice variant form molecular condensates by liquid-liquid phase separation (LLPS) that exhibit disorder characteristics such as rapid intracellular mobility, coactivator interaction, and euchromatin induction. The LLPS and other disorder characteristics were reversed by a class of small-molecule-selective AR-irreversible covalent antagonists (SARICA) represented herein by UT-143 that covalently and selectively bind to C406 and C327 in the AF-1 region. Interfering with LLPS formation with UT-143 or mutagenesis resulted in chromatin condensation and dissociation of AR-V7 interactome, all culminating in a transcriptionally incompetent complex. Biochemical studies suggest that C327 and C406 in the AF-1 region are critical for condensate formation, AR-V7 function, and UT-143's irreversible AR inhibition. Therapeutically, UT-143 possesses drug-like pharmacokinetics and metabolism properties and inhibits PCa cell proliferation and tumor growth. Our work provides critical information suggesting that clinically important AR-V7 forms transcriptionally competent molecular condensates and covalently engaging C327 and C406 in AF-1, dissolves the condensates, and inhibits its function. The work also identifies a library of AF-1-binding AR and AR-SV-selective covalent inhibitors for the treatment of PCa.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Receptores Androgénicos/metabolismo , Cisteína , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Antagonistas de Receptores Androgénicos/farmacología , Neoplasias de la Próstata Resistentes a la Castración/patología , Línea Celular Tumoral , Isoformas de Proteínas/metabolismo
2.
Angew Chem Int Ed Engl ; 62(29): e202304957, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198131

RESUMEN

One of the grand challenges underlying current direct air capture (DAC) technologies relates to the intensive energy cost for sorbent regeneration and CO2 release, making the massive scale (GtCO2 /year) deployment required to have a positive impact on climate change economically unfeasible. This challenge underscores the critical need to develop new DAC processes with substantially reduced regeneration energies. Here, we report a photochemically-driven approach for CO2 release by exploiting the unique properties of an indazole metastable-state photoacid (mPAH). Our measurements on simulated and amino acid-based DAC systems revealed the potential of mPAH to be used for CO2 release cycles by regulating pH changes and associated isomers driven by light. Upon irradiating with moderate intensity light, a ≈55 % and ≈68 % to ≈78 % conversion of total inorganic carbon to CO2 was found for the simulated and amino acid-based DAC systems, respectively. Our results confirm the feasibility of on-demand CO2 release under ambient conditions using light instead of heat, thereby providing an energy efficient pathway for the regeneration of DAC sorbents.

3.
Angew Chem Int Ed Engl ; 62(47): e202310989, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37783669

RESUMEN

Despite intensive research on sustainable elastomers, achieving elastic vitrimers with significantly improved mechanical properties and recyclability remains a scientific challenge. Herein, inspired by the classical elasticity theory, we present a design principle for ultra-tough and highly recyclable elastic vitrimers with a defined network constructed by chemically crosslinking the pre-synthesized disulfide-containing polydimethylsiloxane (PDMS) chains with tetra-arm polyethylene glycol (PEG). The defined network is achieved by the reduced dangling short chains and the relatively uniform molecular weight of network strands. Such elastic vitrimers with the defined network, i.e., PDMS-disulfide-D, exhibit significantly improved mechanical performance than random analogous, previously reported PDMS vitrimers, and even commercial silicone-based thermosets. Moreover, unlike the vitrimers with random network that show obvious loss in mechanical properties after recycling, those with the defined network enable excellent thermal recyclability. The PDMS-disulfide-D also deliver comparable electrochemical signals if utilized as substrates for electromyography sensors after the recycling. The multiple relaxation processes are revealed via a unique physical approach. Multiple techniques are also applied to unravel the microscopic mechanism of the excellent mechanical performance and recyclability of such defined network.

4.
Langmuir ; 38(18): 5439-5453, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35443130

RESUMEN

Enhancing the separation of rare-earth elements (REEs) from gangue materials in mined ores requires an understanding of the fundamental interactions driving the adsorption of collector ligands onto mineral interfaces. In this work, we examine five functionalized hydroxamic acid ligands as potential collectors for the REE-containing bastnäsite mineral in froth flotation using density functional theory calculations and a suite of surface-sensitive analytical spectroscopies. These include vibrational sum frequency generation, attenuated total reflectance Fourier transform infrared, Raman, and X-ray photoelectron spectroscopies. Differences in the chemical makeup of these ligands on well-defined bastnäsite and calcite surfaces allow for a systematic relationship connecting the structure to adsorption activity to be framed in the context of interfacial molecular recognition. We show how the intramolecular hydrogen bonding of adsorbed ligands requires the inclusion of explicit water solvent molecules to correctly map energetic and structural trends measured by experiments. We anticipate that the results and insights from this work will motivate and inform the design of improved flotation collectors for REE ores.

5.
J Am Chem Soc ; 142(1): 290-299, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31801348

RESUMEN

Polymer-stabilized liquid/liquid interfaces are an important and growing class of bioinspired materials that combine the structural and functional capabilities of advanced synthetic materials with naturally evolved biophysical systems. These platforms have the potential to serve as selective membranes for chemical separations and molecular sequencers and to even mimic neuromorphic computing elements. Despite the diversity in function, basic insight into the assembly of well-defined amphiphilic polymers to form functional structures remains elusive, which hinders the continued development of these technologies. In this work, we provide new mechanistic insight into the assembly of an amphiphilic polymer-stabilized oil/aqueous interface, in which the headgroups consist of positively charged methylimidazolium ionic liquids, and the tails are short, monodisperse oligodimethylsiloxanes covalently attached to the headgroups. We demonstrate using vibrational sum frequency generation spectroscopy and pendant drop tensiometery that the composition of the bulk aqueous phase, particularly the ionic strength, dictates the kinetics and structures of the amphiphiles in the organic phase as they decorate the interface. These results show that H-bonding and electrostatic interactions taking place in the aqueous phase bias the grafted oligomer conformations that are adopted in the neighboring oil phase. The kinetics of self-assembly were ionic strength dependent and found to be surprisingly slow, being composed of distinct regimes where molecules adsorb and reorient on relatively fast time scales, but where conformational sampling and frustrated packing takes place over longer time scales. These results set the stage for understanding related chemical phenomena of bioinspired materials in diverse technological and fundamental scientific fields and provide a solid physical foundation on which to design new functional interfaces.


Asunto(s)
Lípidos/química , Polímeros/química , Fenómenos Biofísicos , Enlace de Hidrógeno , Cinética , Estructura Molecular , Concentración Osmolar , Electricidad Estática , Tensión Superficial
6.
Phys Chem Chem Phys ; 21(27): 14775-14785, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31225557

RESUMEN

Polymerized ionic liquids (PolyILs) are promising materials for applications in electrochemical devices spanning from fuel cells to capacitors and batteries. In principle, PolyILs have a competitive advantage over traditional electrolytes in being single ion conductors and thus enabling a transference number close to unity. Despite this perceived advantage, surprisingly low room temperature ionic conductivities measured in the lab raise an important fundamental question: how does the molecular structure mediate conductivity? In this work, wide-angle X-ray scattering (WAXS), vibrational sum frequency generation (vSFG), and density functional theory (DFT) calculations were used to study the bulk and interfacial structure of PolyILs, while broad band dielectric spectroscopy (BDS) was used to probe corresponding dynamics and conductive properties for a series of the PolyIL samples with tunable chemistries and structures. Our results reveal that the size of the mobile anions has a tremendous impact on chain packing in PolyILs that wasn't addressed previously. Larger mobile ions tend to create a well-packed structure, while smaller ions frustrate chain packing. The magnitude of these changes and level of structural heterogeneity are shown to depend on the chemical functionality and flexibility of studied PolyILs. Furthermore, these experimental and computational results provide new insight into the correlation between conductivity and structure in PolyILs, suggesting that structural heterogeneity helps to reduce the activation energy for ionic conductivity in the glassy state.

7.
Phys Chem Chem Phys ; 19(40): 27442-27451, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28975173

RESUMEN

It is well-known that the nature and size of the counterions affect the ionic conductivity and glass transition temperature of ionic polymers in a significant manner. However, the microscopic origin of the underlying changes in the dynamics of chains and counterions is far from completely understood. Using coarse-grained molecular dynamics simulations of flexible and semi-flexible ionic polymers, we demonstrate that the glass transition temperature of ionic polymeric melts depends on the size of monovalent counterions in a non-monotonic manner. The glass transition temperature is found to be the highest for the smallest counterions and decreases with an increase in the counterion radii up to a point, after which the glass transition temperature increases with a further increase in the radii. This behavior is because the counterions have significant effects on the coupled dynamics of the charges on the chains and counterions. In particular, increase in the radii of the counterions leads to strongly coupled dynamics between the charges on the chains and the counterions. The static dielectric constant of the polymer melts also has a significant effect on the coupling and the glass transition temperature. The glass transition temperature is predicted to decrease with an increase in the dielectric constant. This, in turn, leads to an increase in the diffusion constant of the counterions at a given temperature. Backbone rigidity is shown to increase the glass transition temperature and decrease the coupling. Furthermore, faster counterion dynamics is predicted for the melts of semi-flexible chains in comparison with flexible chains at the same segmental relaxation time. As the semi-flexible chains tend to have a longer segmental relaxation time, semi-flexible polymers with high dielectric constants are predicted to have diffusion constants of counterions comparable with flexible polymers.

8.
J Chem Phys ; 146(20): 203201, 2017 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-28571333

RESUMEN

In recent years it has become clear that the interfacial layer formed around nanoparticles in polymer nanocomposites (PNCs) is critical for controlling their macroscopic properties. The interfacial layer occupies a significant volume fraction of the polymer matrix in PNCs and creates strong intrinsic heterogeneity in their structure and dynamics. Here, we focus on analysis of the structure and dynamics of the interfacial region in model PNCs with well-dispersed, spherical nanoparticles with attractive interactions. First, we discuss several experimental techniques that provide structural and dynamic information on the interfacial region in PNCs. Then, we discuss the role of various microscopic parameters in controlling structure and dynamics of the interfacial layer. The analysis presented emphasizes the importance of the polymer-nanoparticle interactions for the slowing down dynamics in the interfacial region, while the thickness of the interfacial layer appears to be dependent on chain rigidity, and has been shown to increase with cooling upon approaching the glass transition. Aside from chain rigidity and polymer-nanoparticle interactions, the interfacial layer properties are also affected by the molecular weight of the polymer and the size of the nanoparticles. In the final part of this focus article, we emphasize the important challenges in the field of polymer nanocomposites and a potential analogy with the behavior observed in thin films.

9.
J Chem Phys ; 146(6): 064902, 2017 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-28201898

RESUMEN

We report a theoretical approach for analyzing impedance of ionic liquids (ILs) and charged polymers such as polymerized ionic liquids (PolyILs) within linear response. The approach is based on the Rayleigh dissipation function formalism, which provides a computational framework for a systematic study of various factors, including polymer dynamics, in affecting the impedance. We present an analytical expression for the impedance within linear response by constructing a one-dimensional model for ionic transport in ILs/PolyILs. This expression is used to extract mutual diffusion constants, the length scale of mutual diffusion, and thicknesses of a low-dielectric layer on the electrodes from the broadband dielectric spectroscopy measurements done for an IL and three PolyILs. Also, static dielectric permittivities of the IL and the PolyILs are determined. The extracted mutual diffusion constants are compared with the self-diffusion constants of ions measured using pulse field gradient (PFG) fluorine nuclear magnetic resonance (NMR). For the first time, excellent agreement between the diffusivities extracted from the Electrode Polarization spectra (EPS) of IL/PolyILs and those measured using the PFG-NMR are found, which allows the use of the EPS and the PFG-NMR techniques in a complimentary manner for a general understanding of the ionic transport.

10.
Nano Lett ; 16(6): 3630-7, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27203453

RESUMEN

The mechanical reinforcement of polymer nanocomposites (PNCs) above the glass transition temperature, Tg, has been extensively studied. However, not much is known about the origin of this effect below Tg. In this Letter, we unravel the mechanism of PNC reinforcement within the glassy state by directly probing nanoscale mechanical properties with atomic force microscopy and macroscopic properties with Brillouin light scattering. Our results unambiguously show that the "glassy" Young's modulus in the interfacial polymer layer of PNCs is two-times higher than in the bulk polymer, which results in significant reinforcement below Tg. We ascribe this phenomenon to a high stretching of the chains within the interfacial layer. Since the interfacial chain packing is essentially temperature independent, these findings provide a new insight into the mechanical reinforcement of PNCs also above Tg.

11.
Anal Chem ; 88(5): 2864-70, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26890087

RESUMEN

In this paper, the use of a hybrid atomic force microscopy/infrared spectroscopy/mass spectrometry imaging platform was demonstrated for the acquisition and correlation of nanoscale sample surface topography and chemical images based on infrared spectroscopy and mass spectrometry. The infrared chemical imaging component of the system utilized photothermal expansion of the sample at the tip of the atomic force microscopy probe recorded at infrared wave numbers specific to the different surface constituents. The mass spectrometry-based chemical imaging component of the system utilized nanothermal analysis probes for thermolytic surface sampling followed by atmospheric pressure chemical ionization of the gas phase species produced with subsequent mass analysis. The basic instrumental setup, operation, and image correlation procedures are discussed, and the multimodal imaging capability and utility are demonstrated using a phase separated poly(2-vinylpyridine)/poly(methyl methacrylate) polymer thin film. The topography and both the infrared and mass spectral chemical images showed that the valley regions of the thin film surface were comprised primarily of poly(2-vinylpyridine) and hill or plateau regions were primarily poly(methyl methacrylate). The spatial resolution of the mass spectral chemical images was estimated to be 1.6 µm based on the ability to distinguish surface features in those images that were also observed in the topography and infrared images of the same surface.

12.
Phys Rev Lett ; 116(3): 038302, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26849618

RESUMEN

The properties of the interfacial layer between the polymer matrix and nanoparticles largely determine the macroscopic properties of polymer nanocomposites (PNCs). Although the static thickness of the interfacial layer was found to increase with the molecular weight (MW), the influence of MW on segmental relaxation and the glass transition in this layer remains to be explored. In this Letter, we show an unexpected MW dependence of the interfacial properties in PNC with attractive polymer-nanoparticle interactions: the thickness of the interfacial layer with hindered segmental relaxation decreases as MW increases, in sharp contrast to theoretical predictions. Further analyses reveal a reduction in mass density of the interfacial layer with increasing MW, which can elucidate these unexpected dynamic effects. Our observations call for a significant revision of the current understandings of PNCs and suggest interesting ways to tailor their properties.

13.
J Chem Phys ; 143(19): 194704, 2015 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-26590550

RESUMEN

The detailed nature of spatially heterogeneous dynamics of glycerol-silica nanocomposites is unraveled by combining dielectric spectroscopy with atomistic simulation and statistical mechanical theory. Analysis of the spatial mobility gradient shows no "glassy" layer, but the α-relaxation time near the nanoparticle grows with cooling faster than the α-relaxation time in the bulk and is ∼20 times longer at low temperatures. The interfacial layer thickness increases from ∼1.8 nm at higher temperatures to ∼3.5 nm upon cooling to near bulk Tg. A real space microscopic description of the mobility gradient is constructed by synergistically combining high temperature atomistic simulation with theory. Our analysis suggests that the interfacial slowing down arises mainly due to an increase of the local cage scale barrier for activated hopping induced by enhanced packing and densification near the nanoparticle surface. The theory is employed to predict how local surface densification can be manipulated to control layer dynamics and shear rigidity over a wide temperature range.

14.
ACS Appl Mater Interfaces ; 16(9): 12052-12061, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38411063

RESUMEN

Interfaces are considered a major bottleneck in the capture of CO2 from air. Efforts to design surfaces to enhance CO2 capture probabilities are challenging due to the remarkably poor understanding of chemistry and self-assembly taking place at these interfaces. Here, we leverage surface-specific vibrational spectroscopy, Langmuir trough techniques, and simulations to mechanistically elucidate how cationic oligomers can drive surface localization of amino acids (AAs) that serve as CO2 capture agents speeding up the apparent rate of absorption. We demonstrate how tuning these interfaces provides a means to facilitate CO2 capture chemistry to occur at the interface, while lowering surface tension and improving transport/reaction probabilities. We show that in the presence of interfacial AA-rich aggregates, one can improve capture probabilities vs that of a bare interface, which holds promise in addressing climate change through the removal of CO2 via tailored interfaces and associated chemistries.

15.
Nanomaterials (Basel) ; 13(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36839117

RESUMEN

Both the dispersion state of nanoparticles (NPs) within polymer nanocomposites (PNCs) and the dynamical state of the polymer altered by the presence of the NP/polymer interfaces have a strong impact on the macroscopic properties of PNCs. In particular, mechanical properties are strongly affected by percolation of hard phases, which may be NP networks, dynamically modified polymer regions, or combinations of both. In this article, the impact on dispersion and dynamics of surface modification of the NPs by short monomethoxysilanes with eight carbons in the alkyl part (C8) is studied. As a function of grafting density and particle content, polymer dynamics is followed by broadband dielectric spectroscopy and analyzed by an interfacial layer model, whereas the particle dispersion is investigated by small-angle X-ray scattering and analyzed by reverse Monte Carlo simulations. NP dispersions are found to be destabilized only at the highest grafting. The interfacial layer formalism allows the clear identification of the volume fraction of interfacial polymer, with its characteristic time. The strongest dynamical slow-down in the polymer is found for unmodified NPs, while grafting weakens this effect progressively. The combination of all three techniques enables a unique measurement of the true thickness of the interfacial layer, which is ca. 5 nm. Finally, the comparison between longer (C18) and shorter (C8) grafts provides unprecedented insight into the efficacy and tunability of surface modification. It is shown that C8-grafting allows for a more progressive tuning, which goes beyond a pure mass effect.

16.
ACS Appl Mater Interfaces ; 15(15): 19634-19645, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-36944180

RESUMEN

As fossil fuels remain a major source of energy throughout the world, developing efficient negative emission technologies, such as direct air capture (DAC), which remove carbon dioxide (CO2) from the air, becomes critical for mitigating climate change. Although all DAC processes involve CO2 transport from air into a sorbent/solvent, through an air-solid or air-liquid interface, the fundamental roles the interfaces play in DAC remain poorly understood. Herein, we study the interfacial behavior of amino acid (AA) solvents used in DAC through a combination of vibrational sum frequency generation spectroscopy and molecular dynamics simulations. This study revealed that the absorption of atmospheric CO2 has antagonistic effects on subsequent capture events that are driven by changes in bulk pH and specific ion effects that feedback on surface organization and interactions. Among the three AAs (leucine, valine, and phenylalanine) studied, we identify and separate behaviors from CO2 loading, chemical changes, variations in pH, and specific ion effects that tune structural and chemical degrees of freedom at the air-aqueous interface. The fundamental mechanistic findings described here are anticipated to enable new approaches to DAC based on exploiting interfaces as a tool to address climate change.

17.
ACS Appl Mater Interfaces ; 15(5): 7496-7510, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36700938

RESUMEN

Fundamental understanding of the macroscopic properties of polymer nanocomposites (PNCs) remains difficult due to the complex interplay of microscopic dynamics and structure, namely interfacial layer relaxations and three-dimensional nanoparticle (NP) arrangements. The effect of surface modification by alkyl methoxysilanes at different grafting densities has been studied in PNCs made of poly(2-vinylpyridine) and spherical 20 nm silica NPs. The segmental dynamics has been probed by broadband dielectric spectroscopy and the filler structure by small-angle X-ray scattering and reverse Monte Carlo simulations. By combining the particle configurations with the interfacial layer properties, it is shown how surface modification tunes the attractive polymer-particle interactions: bare NPs slow down the polymer interfacial layer dynamics over a thickness of ca. 5 nm, while grafting screens these interactions. Our analysis of interparticle spacings and segmental dynamics provides unprecedented insights into the effect of surface modification on the main characteristics of PNCs: particle interactions and polymer interfacial layers.

18.
J Phys Chem B ; 127(21): 4886-4895, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37216432

RESUMEN

Liquid/liquid (L/L) interfaces play a key, yet poorly understood, role in a range of complex chemical phenomena where time-evolving interfacial structures and transient supramolecular assemblies act as gatekeepers to function. Here, we employ surface-specific vibrational sum frequency generation combined with neutron and X-ray scattering methods to track the transport of dioctyl phosphoric acid (DOP) and di-(2-ethylhexyl) phosphoric acid (DEHPA) ligands used in solvent extraction at buried oil/aqueous interfaces away from equilibrium. Our results show evidence for a dynamic interfacial restructuring at low ligand concentrations in contrast to expectation. These time-varying interfaces arise from the transport of sparingly soluble interfacial ligands into the neighboring aqueous phase. These results support a proposed "antagonistic" role of ligand complexation in the aqueous phase that could serve as a holdback mechanism in kinetic liquid extractions. These findings provide new insights into interfacially controlled chemical transport at L/L interfaces and how these interfaces vary chemically, structurally, and temporally in a concentration-dependent manner and present potential avenues to design selective kinetic separations.

19.
J Am Chem Soc ; 134(11): 5040-3, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22401501

RESUMEN

Implantable biofuel cells have been suggested as sustainable micropower sources operating in living organisms, but such bioelectronic systems are still exotic and very challenging to design. Very few examples of abiotic and enzyme-based biofuel cells operating in animals in vivo have been reported. Implantation of biocatalytic electrodes and extraction of electrical power from small living creatures is even more difficult and has not been achieved to date. Here we report on the first implanted biofuel cell continuously operating in a snail and producing electrical power over a long period of time using physiologically produced glucose as a fuel. The "electrified" snail, being a biotechnological living "device", was able to regenerate glucose consumed by biocatalytic electrodes, upon appropriate feeding and relaxing, and then produce a new "portion" of electrical energy. The snail with the implanted biofuel cell will be able to operate in a natural environment, producing sustainable electrical micropower for activating various bioelectronic devices.


Asunto(s)
Biocatálisis , Fuentes de Energía Bioeléctrica , Caracoles/metabolismo , Animales , Electrodos , Glucosa/química , Glucosa/metabolismo
20.
Chem Rec ; 12(1): 114-30, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22127790

RESUMEN

Electrode interfaces functionalized with various signal-responsive materials have been designed to allow switchable properties of the modified electrodes. External signals of different nature (electrical potential, magnetic field, light, chemical/biochemical inputs) were applied to reversibly activate-deactivate the electrode interfaces upon demand. Multifunctional properties of the modified interfaces have allowed their responses to complex combinations of external signals. Further increase of their complexity has been achieved by integrating the signal-responsive interfaces with unconventional biomolecular computing systems logically processing multiple biochemical signals. This approach has resulted in electrochemical systems controlled by complex variations of biomarkers corresponding to different physiological conditions, thus allowing biological control over electronic systems. The switchable electrodes have been integrated with various "smart" biosensing and signal-processing systems and have been used to assemble biofuel cells producing power on demand.


Asunto(s)
Técnicas Electroquímicas , Fuentes de Energía Bioeléctrica , Técnicas Biosensibles , Catálisis , Electrodos , Concentración de Iones de Hidrógeno , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA