Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 171(2): 305-320.e24, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985562

RESUMEN

The human genome folds to create thousands of intervals, called "contact domains," that exhibit enhanced contact frequency within themselves. "Loop domains" form because of tethering between two loci-almost always bound by CTCF and cohesin-lying on the same chromosome. "Compartment domains" form when genomic intervals with similar histone marks co-segregate. Here, we explore the effects of degrading cohesin. All loop domains are eliminated, but neither compartment domains nor histone marks are affected. Loss of loop domains does not lead to widespread ectopic gene activation but does affect a significant minority of active genes. In particular, cohesin loss causes superenhancers to co-localize, forming hundreds of links within and across chromosomes and affecting the regulation of nearby genes. We then restore cohesin and monitor the re-formation of each loop. Although re-formation rates vary greatly, many megabase-sized loops recovered in under an hour, consistent with a model where loop extrusion is rapid.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Genoma Humano , Proteínas Represoras/metabolismo , Factor de Unión a CCCTC , Línea Celular Tumoral , Proteínas de Unión al ADN , Elementos de Facilitación Genéticos , Código de Histonas , Humanos , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Fosfoproteínas/metabolismo , Cohesinas
2.
Cell ; 159(7): 1665-80, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25497547

RESUMEN

We use in situ Hi-C to probe the 3D architecture of genomes, constructing haploid and diploid maps of nine cell types. The densest, in human lymphoblastoid cells, contains 4.9 billion contacts, achieving 1 kb resolution. We find that genomes are partitioned into contact domains (median length, 185 kb), which are associated with distinct patterns of histone marks and segregate into six subcompartments. We identify ∼10,000 loops. These loops frequently link promoters and enhancers, correlate with gene activation, and show conservation across cell types and species. Loop anchors typically occur at domain boundaries and bind CTCF. CTCF sites at loop anchors occur predominantly (>90%) in a convergent orientation, with the asymmetric motifs "facing" one another. The inactive X chromosome splits into two massive domains and contains large loops anchored at CTCF-binding repeats.


Asunto(s)
Núcleo Celular/genética , Cromatina/química , Genoma Humano , Animales , Factor de Unión a CCCTC , Línea Celular , Núcleo Celular/química , Regulación de la Expresión Génica , Código de Histonas , Humanos , Ratones , Conformación Molecular , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas Represoras/metabolismo
3.
Mol Cell ; 78(3): 506-521.e6, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32386543

RESUMEN

Higher-order chromatin structure and DNA methylation are implicated in multiple developmental processes, but their relationship to cell state is unknown. Here, we find that large (>7.3 kb) DNA methylation nadirs (termed "grand canyons") can form long loops connecting anchor loci that may be dozens of megabases (Mb) apart, as well as inter-chromosomal links. The interacting loci cover a total of ∼3.5 Mb of the human genome. The strongest interactions are associated with repressive marks made by the Polycomb complex and are diminished upon EZH2 inhibitor treatment. The data are suggestive of the formation of these loops by interactions between repressive elements in the loci, forming a genomic subcompartment, rather than by cohesion/CTCF-mediated extrusion. Interestingly, unlike previously characterized subcompartments, these interactions are present only in particular cell types, such as stem and progenitor cells. Our work reveals that H3K27me3-marked large DNA methylation grand canyons represent a set of very-long-range loops associated with cellular identity.


Asunto(s)
Cromatina/química , Cromatina/genética , Metilación de ADN , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/fisiología , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Diferenciación Celular , Cromatina/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodominio/genética , Humanos , Hibridación Fluorescente in Situ , Lisina/genética , Lisina/metabolismo , Proteínas Nucleares/genética , Factores de Transcripción SOXB1/genética , Proteína de la Caja Homeótica de Baja Estatura/genética , Factores de Transcripción/genética
4.
Genome Res ; 32(4): 643-655, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35177558

RESUMEN

The occurrence and formation of genomic structural variants (SVs) is known to be influenced by the 3D chromatin architecture, but the extent and magnitude have been challenging to study. Here, we apply Hi-C to study chromatin organization before and after induction of chromothripsis in human cells. We use Hi-C to manually assemble the derivative chromosomes following the occurrence of massive complex rearrangements, which allows us to study the sources of SV formation and their consequences on gene regulation. We observe an action-reaction interplay whereby the 3D chromatin architecture directly impacts the location and formation of SVs. In turn, the SVs reshape the chromatin organization to alter the local topologies, replication timing, and gene regulation in cis We show that SVs have a strong tendency to occur between similar chromatin compartments and replication timing regions. Moreover, we find that SVs frequently occur at 3D loop anchors, that SVs can cause a switch in chromatin compartments and replication timing, and that this is a major source of SV-mediated effects on nearby gene expression changes. Finally, we provide evidence for a general mechanistic bias of the 3D chromatin on SV occurrence using data from more than 2700 patient-derived cancer genomes.


Asunto(s)
Cromotripsis , Genoma , Cromatina/genética , Cromosomas , Genoma Humano , Variación Estructural del Genoma , Humanos
5.
J Hered ; 112(3): 286-302, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33686424

RESUMEN

Warming climate and increasing desertification urge the identification of genes involved in heat and dehydration tolerance to better inform and target biodiversity conservation efforts. Comparisons among extant desert-adapted species can highlight parallel or convergent patterns of genome evolution through the identification of shared signatures of selection. We generate a chromosome-level genome assembly for the canyon mouse (Peromyscus crinitus) and test for a signature of parallel evolution by comparing signatures of selective sweeps across population-level genomic resequencing data from another congeneric desert specialist (Peromyscus eremicus) and a widely distributed habitat generalist (Peromyscus maniculatus), that may be locally adapted to arid conditions. We identify few shared candidate loci involved in desert adaptation and do not find support for a shared pattern of parallel evolution. Instead, we hypothesize divergent molecular mechanisms of desert adaptation among deer mice, potentially tied to species-specific historical demography, which may limit or enhance adaptation. We identify a number of candidate loci experiencing selective sweeps in the P. crinitus genome that are implicated in osmoregulation (Trypsin, Prostasin) and metabolic tuning (Kallikrein, eIF2-alpha kinase GCN2, APPL1/2), which may be important for accommodating hot and dry environmental conditions.


Asunto(s)
Adaptación Fisiológica , Peromyscus , Adaptación Fisiológica/genética , Animales , Clima , Genoma , Peromyscus/genética , Análisis de Secuencia de ADN
6.
Proc Natl Acad Sci U S A ; 112(47): E6456-65, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26499245

RESUMEN

We recently used in situ Hi-C to create kilobase-resolution 3D maps of mammalian genomes. Here, we combine these maps with new Hi-C, microscopy, and genome-editing experiments to study the physical structure of chromatin fibers, domains, and loops. We find that the observed contact domains are inconsistent with the equilibrium state for an ordinary condensed polymer. Combining Hi-C data and novel mathematical theorems, we show that contact domains are also not consistent with a fractal globule. Instead, we use physical simulations to study two models of genome folding. In one, intermonomer attraction during polymer condensation leads to formation of an anisotropic "tension globule." In the other, CCCTC-binding factor (CTCF) and cohesin act together to extrude unknotted loops during interphase. Both models are consistent with the observed contact domains and with the observation that contact domains tend to form inside loops. However, the extrusion model explains a far wider array of observations, such as why loops tend not to overlap and why the CTCF-binding motifs at pairs of loop anchors lie in the convergent orientation. Finally, we perform 13 genome-editing experiments examining the effect of altering CTCF-binding sites on chromatin folding. The convergent rule correctly predicts the affected loops in every case. Moreover, the extrusion model accurately predicts in silico the 3D maps resulting from each experiment using only the location of CTCF-binding sites in the WT. Thus, we show that it is possible to disrupt, restore, and move loops and domains using targeted mutations as small as a single base pair.


Asunto(s)
Cromatina/química , Cromatina/genética , Ingeniería Genética , Genoma/genética , Conformación de Ácido Nucleico , Anisotropía , Emparejamiento Base , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Simulación por Computador , Difusión , Fractales , Humanos , Hibridación Fluorescente in Situ , Modelos Moleculares , Motivos de Nucleótidos/genética , Polímeros/química , Probabilidad , Proteínas Represoras/metabolismo , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA