Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 14: 49, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24552611

RESUMEN

BACKGROUND: Methionine is an important nutrient in animal feed and several approaches have been developed to increase methionine concentration in maize (Zea mays L.) grain. One approach is through traditional breeding using recurrent selection. Using divergent selection, genetically related populations with extreme differences in grain methionine content were produced. In order to better understand the molecular mechanisms controlling grain methionine content, we examined seed proteins, transcript levels of candidate genes, and genotypes of these populations. RESULTS: Two populations were selected for high or low methionine concentration for eight generations and 40 and 56% differences between the high and low populations in grain methionine concentration were observed. Mean values between the high and low methionine populations differed by greater than 1.5 standard deviations in some cycles of selection. Other amino acids and total protein concentration exhibited much smaller changes. In an effort to understand the molecular mechanisms that contribute to these differences, we compared transcript levels of candidate genes encoding high methionine seed storage proteins involved in sulfur assimilation or methionine biosynthesis. In combination, we also explored the genetic mechanisms at the SNP level through implementation of an association analysis. Significant differences in methionine-rich seed storage protein genes were observed in comparisons of high and low methionine populations, while transcripts of seed storage proteins lacking high levels of methionine were unchanged. Seed storage protein levels were consistent with transcript levels. Two genes involved in sulfur assimilation, Cys2 and CgS1 showed substantial differences in allele frequencies when two selected populations were compared to the starting populations. Major genes identified across cycles of selection by a high-stringency association analysis included dzs18, wx, dzs10, and zp27. CONCLUSIONS: We hypothesize that transcriptional changes alter sink strength by altering the levels of methionine-rich seed storage proteins. To meet the altered need for sulfur, a cysteine-rich seed storage protein is altered while sulfur assimilation and methionine biosynthesis throughput is changed by selection for certain alleles of Cys2 and CgS1.


Asunto(s)
Metionina/metabolismo , Zea mays/metabolismo , Regulación de la Expresión Génica de las Plantas , Polimorfismo de Nucleótido Simple/genética , Zea mays/genética
2.
Theor Appl Genet ; 119(6): 1129-42, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19701625

RESUMEN

All crop species have been domesticated from their wild relatives, and geneticists are just now beginning to understand the consequences of artificial (human) selection on agronomic traits that are relevant today. The primary consequence is a basal loss of diversity across the genome, and an additional reduction in diversity for genes underlying traits targeted by selection. An understanding of attributes of the wild relatives may provide insight into target traits and valuable allelic variants for modern agriculture. This is especially true for maize (Zea mays ssp. mays), where its wild ancestor, teosinte (Z. mays ssp. parviglumis), is so strikingly different than modern maize. One obvious target of selection is the size and composition of the kernel. We evaluated kernel characteristics, kernel composition, and zein profiles for a diverse set of modern inbred lines, teosinte accessions, and landraces, the intermediate between inbreds and teosinte. We found that teosinte has very small seeds, but twice the protein content of landraces and inbred lines. Teosinte has a higher average alpha zein content (nearly 89% of total zeins as compared to 72% for inbred lines and 76% for landraces), and there are many novel alcohol-soluble proteins in teosinte relative to the other two germplasm groups. Nearly every zein protein varied in abundance among the germplasm groups, especially the methionine-rich delta zein protein, and the gamma zeins. Teosinte and landraces harbor phenotypic variation that will facilitate genetic dissection of kernel traits and grain quality, ultimately leading to improvement via traditional plant breeding and/or genetic engineering.


Asunto(s)
Productos Agrícolas/genética , Variación Genética , Semillas/genética , Zea mays/genética , Zeína/genética , Agricultura , Geografía , Selección Genética
3.
PLoS One ; 11(2): e0148587, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26895451

RESUMEN

High activity levels of a transgene can be very useful, making a transgene easier to evaluate for safety and efficacy. High activity levels can also increase the economic benefit of the production of high value proteins in transgenic plants. The goal of this research is to determine if recurrent selection for activity of a transgene will result in higher activity, and if selection for activity of a transgene controlled by a native promoter will also increase protein levels of the native gene with the same promoter. To accomplish this goal we used transgenic maize containing a construct encoding green fluorescent protein controlled by the promoter for the maize endosperm-specific 27 kDa gamma zein seed storage protein. We carried out recurrent selection for fluorescence intensity in two breeding populations. After three generations of selection, both selected populations were significantly more fluorescent and had significantly higher levels of 27 kDa gamma zein than the unselected control populations. These higher levels of the 27 kDa gamma zein occurred independently of the presence of the transgene. The results show that recurrent selection can be used to increase activity of a transgene and that selection for a transgene controlled by a native promoter can increase protein levels of the native gene with the same promoter via proxy selection. Moreover, the increase in native gene protein level is maintained in the absence of the transgene, demonstrating that proxy selection can be used to produce non-transgenic plants with desired changes in gene expression.


Asunto(s)
Genes de Plantas , Regiones Promotoras Genéticas , Selección Genética , Transgenes , Zea mays/genética , Genes Reporteros , Germinación/genética , Fenotipo , Fitomejoramiento , Plantas Modificadas Genéticamente , Carácter Cuantitativo Heredable , Semillas/genética , Semillas/metabolismo , Zea mays/metabolismo , Zeína/genética , Zeína/metabolismo
4.
J Agric Food Chem ; 61(30): 7349-56, 2013 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-23834908

RESUMEN

Maize ( Zea mays ) is an important staple crop in many parts of the world but has low iron bioavailability, in part due to its high phytate content. Hemoglobin is a form of iron that is highly bioavailable, and its bioavailability is not inhibited by phytate. It was hypothesized that maize hemoglobin is a highly bioavailable iron source and that biofortification of maize with iron can be accomplished by overexpression of maize globin in the endosperm. Maize was transformed with a gene construct encoding a translational fusion of maize globin and green fluorescent protein under transcriptional control of the maize 27 kDa γ-zein promoter. Iron bioavailability of maize hemoglobin produced in Escherichia coli and of stably transformed seeds expressing the maize globin-GFP fusion was determined using an in vitro Caco-2 cell culture model. Maize flour fortified with maize hemoglobin was found to have iron bioavailability that is not significantly different from that of flour fortified with ferrous sulfate or bovine hemoglobin but is significantly higher than unfortified flour. Transformed maize grain expressing maize globin was found to have iron bioavailability similar to that of untransformed seeds. These results suggest that maize globin produced in E. coli may be an effective iron fortificant, but overexpressing maize globin in maize endosperm may require a different strategy to increase bioavailable iron content in maize.


Asunto(s)
Hemoglobinas/metabolismo , Mucosa Intestinal/metabolismo , Hierro/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Verduras/metabolismo , Zea mays/metabolismo , Disponibilidad Biológica , Células CACO-2 , Alimentos Fortificados , Hemoglobinas/análisis , Hemoglobinas/genética , Humanos , Modelos Biológicos , Proteínas de Plantas/análisis , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/genética , Verduras/química , Verduras/genética , Zea mays/química , Zea mays/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA