Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 29(8): 1292-1309, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32191790

RESUMEN

As the powerhouses of the eukaryotic cell, mitochondria must maintain their genomes which encode proteins essential for energy production. Mitochondria are characterized by guanine-rich DNA sequences that spontaneously form unusual three-dimensional structures known as G-quadruplexes (G4). G4 structures can be problematic for the essential processes of DNA replication and transcription because they deter normal progression of the enzymatic-driven processes. In this study, we addressed the hypothesis that mitochondrial G4 is a source of mutagenesis leading to base-pair substitutions. Our computational analysis of 2757 individual genomes from two Italian population cohorts (SardiNIA and InCHIANTI) revealed a statistically significant enrichment of mitochondrial mutations within sequences corresponding to stable G4 DNA structures. Guided by the computational analysis results, we designed biochemical reconstitution experiments and demonstrated that DNA synthesis by two known mitochondrial DNA polymerases (Pol γ, PrimPol) in vitro was strongly blocked by representative stable G4 mitochondrial DNA structures, which could be overcome in a specific manner by the ATP-dependent G4-resolving helicase Pif1. However, error-prone DNA synthesis by PrimPol using the G4 template sequence persisted even in the presence of Pif1. Altogether, our results suggest that genetic variation is enriched in G-quadruplex regions that impede mitochondrial DNA replication.


Asunto(s)
ADN Helicasas/genética , ADN Polimerasa gamma/genética , ADN Primasa/genética , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , G-Cuádruplex , Enzimas Multifuncionales/genética , ADN Mitocondrial/genética , Genoma Mitocondrial/genética , Guanina/metabolismo , Humanos , Italia , Mitocondrias/genética , Mutagénesis/genética , Mutación/genética , Conformación de Ácido Nucleico , Secuenciación Completa del Genoma
2.
J Biol Chem ; 295(9): 2544-2554, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31974161

RESUMEN

Mammalian mitochondria assemble four complexes of the respiratory chain (RCI, RCIII, RCIV, and RCV) by combining 13 polypeptides synthesized within mitochondria on mitochondrial ribosomes (mitoribosomes) with over 70 polypeptides encoded in nuclear DNA, translated on cytoplasmic ribosomes, and imported into mitochondria. We have previously observed that mitoribosome assembly is inefficient because some mitoribosomal proteins are produced in excess, but whether this is the case for other mitochondrial assemblies such as the RCs is unclear. We report here that pulse-chase stable isotope labeling with amino acids in cell culture (SILAC) is a valuable technique to study RC assembly because it can reveal considerable differences in the assembly rates and efficiencies of the different complexes. The SILAC analyses of HeLa cells indicated that assembly of RCV, comprising F1/Fo-ATPase, is rapid with little excess subunit synthesis, but that assembly of RCI (i.e. NADH dehydrogenase) is far less efficient, with dramatic oversynthesis of numerous proteins, particularly in the matrix-exposed N and Q domains. Unassembled subunits were generally degraded within 3 h. We also observed differential assembly kinetics for individual complexes that were immunoprecipitated with complex-specific antibodies. Immunoprecipitation with an antibody that recognizes the ND1 subunit of RCI co-precipitated a number of proteins implicated in FeS cluster assembly and newly synthesized ubiquinol-cytochrome c reductase Rieske iron-sulfur polypeptide 1 (UQCRFS1), the Rieske FeS protein in RCIII, reflecting some coordination between RCI and RCIII assemblies. We propose that pulse-chase SILAC labeling is a useful tool for studying rates of protein complex assembly and degradation.


Asunto(s)
Complejo I de Transporte de Electrón/genética , Proteínas Hierro-Azufre/genética , Mitocondrias/genética , NADH Deshidrogenasa/genética , ATPasas de Translocación de Protón/genética , Técnicas de Cultivo de Célula/métodos , Núcleo Celular/genética , ADN/genética , Transporte de Electrón/genética , Complejo I de Transporte de Electrón/química , Células HeLa , Humanos , Marcaje Isotópico/métodos , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Ribosomas Mitocondriales/metabolismo , NADH Deshidrogenasa/química , Péptidos/genética , Transporte de Proteínas/genética , ATPasas de Translocación de Protón/química
3.
Mol Cell ; 49(1): 121-32, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23201127

RESUMEN

Human mitochondrial transcription factor A (TFAM) is a high-mobility group (HMG) protein at the nexus of mitochondrial DNA (mtDNA) replication, transcription, and inheritance. Little is known about the mechanisms underlying its posttranslational regulation. Here, we demonstrate that TFAM is phosphorylated within its HMG box 1 (HMG1) by cAMP-dependent protein kinase in mitochondria. HMG1 phosphorylation impairs the ability of TFAM to bind DNA and to activate transcription. We show that only DNA-free TFAM is degraded by the Lon protease, which is inhibited by the anticancer drug bortezomib. In cells with normal mtDNA levels, HMG1-phosphorylated TFAM is degraded by Lon. However, in cells with severe mtDNA deficits, nonphosphorylated TFAM is also degraded, as it is DNA free. Depleting Lon in these cells increases levels of TFAM and upregulates mtDNA content, albeit transiently. Phosphorylation and proteolysis thus provide mechanisms for rapid fine-tuning of TFAM function and abundance in mitochondria, which are crucial for maintaining and expressing mtDNA.


Asunto(s)
ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteasa La/metabolismo , Procesamiento Proteico-Postraduccional , Factores de Transcripción/metabolismo , Sustitución de Aminoácidos , Secuencia de Bases , Sitios de Unión , Ácidos Borónicos/farmacología , Bortezomib , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Técnicas de Silenciamiento del Gen , Genoma Mitocondrial , Células HEK293 , Células HeLa , Humanos , Mitocondrias/enzimología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Modelos Moleculares , Fosforilación , Proteasa La/antagonistas & inhibidores , Proteasa La/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteolisis , Pirazinas/farmacología , Interferencia de ARN , Factores de Transcripción/química , Factores de Transcripción/genética , Activación Transcripcional
4.
Am J Physiol Renal Physiol ; 319(6): F955-F965, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33073585

RESUMEN

Mitochondria play a complex role in maintaining cellular function including ATP generation, generation of biosynthetic precursors for macromolecules, maintenance of redox homeostasis, and metabolic waste management. Although the contribution of mitochondrial function in various kidney diseases has been studied, there are still avenues that need to be explored under healthy and diseased conditions. Mitochondrial damage and dysfunction have been implicated in experimental models of podocytopathy as well as in humans with glomerular diseases resulting from podocyte dysfunction. Specifically, in the podocyte, metabolism is largely driven by oxidative phosphorylation or glycolysis depending on the metabolic needs. These metabolic needs may change drastically in the presence of podocyte injury in glomerular diseases such as diabetic kidney disease or focal segmental glomerulosclerosis. Here, we review the role of mitochondria in the podocyte and the factors regulating its function at baseline and in a variety of podocytopathies to identify potential targets for therapy.


Asunto(s)
Mitocondrias/fisiología , Podocitos/fisiología , Humanos , Enfermedades Renales/metabolismo
5.
Adv Exp Med Biol ; 1140: 575-583, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31347072

RESUMEN

The global measurement of assembly and turnover of protein containing complexes within cells has advanced with the development of pulse stable isotope labelled amino acid approaches. Stable isotope labeling with amino acids in cell culture (SILAC) allows the incorporation of "light" 12-carbon amino acids or "heavy" 13-carbon amino acids into cells or organisms and the quantitation of proteins and peptides containing these amino acid tags using mass spectrometry. The use of these labels in pulse or pulse-chase scenarios has enabled measurements of macromolecular dynamics in cells, on time scales of several hours. Here we review advances with this approach and alternative or parallel strategies. We also examine the statistical considerations impacting datasets detailing mitochondrial assembly, to highlight key parameters in establishing significance and reproducibility.


Asunto(s)
Aminoácidos/química , Técnicas de Cultivo de Célula , Marcaje Isotópico , Espectrometría de Masas , Proteínas/análisis , Reproducibilidad de los Resultados
6.
Am J Respir Crit Care Med ; 196(12): 1571-1581, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28783377

RESUMEN

RATIONALE: Idiopathic pulmonary fibrosis (IPF) involves the accumulation of α-smooth muscle actin-expressing myofibroblasts arising from interactions with soluble mediators such as transforming growth factor-ß1 (TGF-ß1) and mechanical influences such as local tissue stiffness. Whereas IPF fibroblasts are enriched for aerobic glycolysis and innate immune receptor activation, innate immune ligands related to mitochondrial injury, such as extracellular mitochondrial DNA (mtDNA), have not been identified in IPF. OBJECTIVES: We aimed to define an association between mtDNA and fibroblast responses in IPF. METHODS: We evaluated the response of normal human lung fibroblasts (NHLFs) to stimulation with mtDNA and determined whether the glycolytic reprogramming that occurs in response to TGF-ß1 stimulation and direct contact with stiff substrates, and spontaneously in IPF fibroblasts, is associated with excessive levels of mtDNA. We measured mtDNA concentrations in bronchoalveolar lavage (BAL) from subjects with and without IPF, as well as in plasma samples from two longitudinal IPF cohorts and demographically matched control subjects. MEASUREMENTS AND MAIN RESULTS: Exposure to mtDNA augments α-smooth muscle actin expression in NHLFs. The metabolic changes in NHLFs that are induced by interactions with TGF-ß1 or stiff hydrogels are accompanied by the accumulation of extracellular mtDNA. These findings replicate the spontaneous phenotype of IPF fibroblasts. mtDNA concentrations are increased in IPF BAL and plasma, and in the latter compartment, they display robust associations with disease progression and reduced event-free survival. CONCLUSIONS: These findings demonstrate a previously unrecognized and highly novel connection between metabolic reprogramming, mtDNA, fibroblast activation, and clinical outcomes that provides new insight into IPF.


Asunto(s)
ADN Mitocondrial/metabolismo , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/mortalidad , Anciano , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino
7.
Mol Cell ; 32(3): 325-36, 2008 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-18995831

RESUMEN

DNA2, a helicase/nuclease family member, plays versatile roles in processing DNA intermediates during DNA replication and repair. Yeast Dna2 (yDna2) is essential in RNA primer removal during nuclear DNA replication and is important in repairing UV damage, base damage, and double-strand breaks. Our data demonstrate that, surprisingly, human DNA2 (hDNA2) does not localize to nuclei, as it lacks a nuclear localization signal equivalent to that present in yDna2. Instead, hDNA2 migrates to the mitochondria, interacts with mitochondrial DNA polymerase gamma, and significantly stimulates polymerase activity. We further demonstrate that hDNA2 and flap endonuclease 1 synergistically process intermediate 5' flap structures occurring in DNA replication and long-patch base excision repair (LP-BER) in mitochondria. Depletion of hDNA2 from a mitochondrial extract reduces its efficiency in RNA primer removal and LP-BER. Taken together, our studies illustrate an evolutionarily diversified role of hDNA2 in mitochondrial DNA replication and repair in a mammalian system.


Asunto(s)
ADN Helicasas/metabolismo , Reparación del ADN , Replicación del ADN , Adenosina Trifosfatasas/metabolismo , Catálisis , Núcleo Celular/enzimología , Citoplasma/enzimología , Desoxirribonucleasas/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Mitocondrias/enzimología , Biosíntesis de Proteínas
8.
J Biol Chem ; 289(36): 24936-42, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25074936

RESUMEN

Advances in proteomics and large scale studies of potential mitochondrial proteins have led to the identification of many novel mitochondrial proteins in need of further characterization. Among these novel proteins are three mammalian rRNA methyltransferase family members RNMTL1, MRM1, and MRM2. MRM1 and MRM2 have bacterial and yeast homologs, whereas RNMTL1 appears to have evolved later in higher eukaryotes. We recently confirmed the localization of the three proteins to mitochondria, specifically in the vicinity of mtDNA nucleoids. In this study, we took advantage of the ability of 2'-O-ribose modification to block site-specific cleavage of RNA by DNAzymes to show that MRM1, MRM2, and RNMTL1 are responsible for modification of human large subunit rRNA at residues G(1145), U(1369), and G(1370), respectively.


Asunto(s)
Metiltransferasas/metabolismo , Proteínas Mitocondriales/metabolismo , ARN Ribosómico 16S/metabolismo , Subunidades Ribosómicas Grandes/metabolismo , Secuencia de Bases , Sitios de Unión/genética , Northern Blotting , Células HEK293 , Células HeLa , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Metilación , Metiltransferasas/genética , Proteínas Mitocondriales/genética , Proteínas Nucleares , Interferencia de ARN , ARN Ribosómico 16S/genética , Subunidades Ribosómicas Grandes/genética
9.
J Biol Chem ; 288(43): 31386-99, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-24036117

RESUMEN

We have identified RNMTL1, MRM1, and MRM2 (FtsJ2) as members of the RNA methyltransferase family that may be responsible for the three known 2'-O-ribose modifications of the 16 S rRNA core of the large mitochondrial ribosome subunit. These proteins are confined to foci located in the vicinity of mtDNA nucleoids. They show distinct patterns of association with mtDNA nucleoids and/or mitochondrial ribosomes in cell fractionation studies. We focused on the role of the least studied protein in this set, RNMTL1, to show that this protein interacts with the large ribosomal subunit as well as with a series of non-ribosomal proteins that may be involved in coupling of the rate of rRNA transcription and ribosome assembly in mitochondria. siRNA-directed silencing of RNMTL1 resulted in a significant inhibition of translation on mitochondrial ribosomes. Our results are consistent with a role for RNMTL1 in methylation of G(1370) of human 16 S rRNA.


Asunto(s)
ADN Mitocondrial/metabolismo , Metiltransferasas/metabolismo , ARN Ribosómico 16S/metabolismo , ARN/metabolismo , Ribosomas/metabolismo , Células 3T3 , Animales , ADN Mitocondrial/genética , Humanos , Metiltransferasas/genética , Ratones , Proteínas Mitocondriales/biosíntesis , Biosíntesis de Proteínas/fisiología , ARN/genética , ARN Mitocondrial , ARN Ribosómico 16S/genética , Ribosomas/genética
10.
Biochim Biophys Acta ; 1819(9-10): 914-20, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22142616

RESUMEN

Eukaryotic cells are characterized by their content of intracellular membrane-bound organelles, including mitochondria as well as nuclei. These two DNA-containing compartments employ two distinct strategies for storage and readout of genetic information. The diploid nuclei of human cells contain about 6 billion base pairs encoding about 25,000 protein-encoding genes, averaging 120 kB/gene, packaged in chromatin arranged as a regular nucleosomal array. In contrast, human cells contain hundreds to thousands of copies of a ca.16 kB mtDNA genome tightly packed with 13 protein-coding genes along with rRNA and tRNA genes required for their expression. The mtDNAs are dispersed throughout the mitochondrial network as histone-free nucleoids containing single copies or small clusters of genomes. This review will summarize recent advances in understanding the microscopic structure and molecular composition of mtDNA nucleoids in higher eukaryotes. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.


Asunto(s)
Núcleo Celular , ADN Mitocondrial/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Núcleo Celular/genética , Núcleo Celular/ultraestructura , Expresión Génica , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Nucleosomas/genética , Nucleosomas/ultraestructura , ARN Ribosómico/genética , ARN Ribosómico/metabolismo
11.
PLoS One ; 16(3): e0249047, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33765066

RESUMEN

Mitochondria are commonly viewed as highly elongated organelles with regularly spaced mtDNA genomes organized as compact nucleoids that generate the local transcripts essential for production of mitochondrial ribosomes and key components of the respiratory chain. In contrast, A549 human lung carcinoma cells frequently contain apparently swollen mitochondria harboring multiple discrete mtDNA nucleoids and RNA processing granules in a contiguous matrix compartment. While this seemingly aberrant mitochondrial morphology is akin to "mito-bulbs" previously described in cells exposed to a variety of genomic stressors, it occurs in A549 cells under typical culture conditions. We provide a detailed confocal and super-resolution microscopic investigation of the incidence of such mito-bulbs in A549 cells. Most mito-bulbs appear stable, engage in active replication and transcription, and maintain respiration but feature an elevated oxidative environment. High concentrations of glucose and/or L-glutamine in growth media promote a greater incidence of mito-bulbs. Furthermore, we demonstrate that treatment of A549 cells with TGFß suppresses the formation of mito-bulbs while treatment with a specific TGFß pathway inhibitor substantially increases incidence. This striking heterogeneity of mitochondrial form and function may play an important role in a variety of diseases involving mitochondrial dysfunction.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias/metabolismo , Células A549 , ADN Mitocondrial/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Glucosa/farmacología , Glutamina/farmacología , Humanos , Potencial de la Membrana Mitocondrial , Microscopía Confocal , Mitocondrias/genética , Dinámicas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , ARN/metabolismo , Factor de Crecimiento Transformador beta/agonistas , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo
12.
Methods Mol Biol ; 554: 3-14, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19513664

RESUMEN

Mitochondrial DNA (mtDNA) in animal cells is organized into clusters of 5-7 genomes referred to as nucleoids. Contrary to the notion that mtDNA is largely free of bound proteins, these structures are nearly as rich in protein as nuclear chromatin. While the purification of intact, membrane-bound mitochondria is an established method, relatively few studies have attempted biochemical purification of mtDNA nucleoids. In this chapter, two alternative methods are presented for the purification of nucleoids. The first method yields the so-called native nucleoids, using conditions designed to preserve non-covalent protein-DNA and protein-protein interactions. The second method uses formaldehyde to crosslink proteins to mtDNA and exposes nucleoids to treatment with harsh detergents and high salt concentrations.


Asunto(s)
Núcleo Celular/metabolismo , ADN Mitocondrial/aislamiento & purificación , Proteínas de Unión al ADN/aislamiento & purificación , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/aislamiento & purificación , Factores de Transcripción/aislamiento & purificación , Cromatografía de Afinidad , Reactivos de Enlaces Cruzados/farmacología , ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/metabolismo , Formaldehído/farmacología , Humanos , Proteínas Mitocondriales/metabolismo , Factores de Transcripción/metabolismo
13.
J Neurosci ; 27(7): 1738-45, 2007 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-17301181

RESUMEN

Exposure of neurons to high concentrations of excitatory neurotransmitters causes them to undergo excitotoxic death via multiple synergistic injury mechanisms. One of these mechanisms involves actions undertaken locally by microglia, the CNS-resident macrophages. Mice deficient in the serine protease plasmin exhibit decreased microglial migration to the site of excitatory neurotransmitter release and are resistant to excitotoxic neurodegeneration. Microglial chemotaxis can be signaled by the chemokine monocyte chemoattractant protein-1 (MCP-1)/CCL2 (CC chemokine ligand 2). We show here that mice genetically deficient for MCP-1 phenocopy plasminogen deficiency by displaying decreased microglial recruitment and resisting excitotoxic neurodegeneration. Connecting these pathways, we demonstrate that MCP-1 undergoes a proteolytic processing step mediated by plasmin. The processing, which consists of removal of the C terminus of MCP-1, enhances the potency of MCP-1 in in vitro migration assays. Finally, we show that infusion of the cleaved form of MCP-1 into the CNS restores microglial recruitment and excitotoxicity in plasminogen-deficient mice. These findings identify MCP-1 as a key downstream effector in the excitotoxic pathway triggered by plasmin and identify plasmin as an extracellular chemokine activator. Finally, our results provide a mechanism that explains the resistance of plasminogen-deficient mice to excitotoxicity.


Asunto(s)
Quimiocina CCL2/efectos de los fármacos , Quimiocina CCL2/metabolismo , Fibrinolisina/farmacología , Fibrinolíticos/farmacología , Enfermedades Neurodegenerativas/metabolismo , Análisis de Varianza , Animales , Antígenos de Diferenciación/metabolismo , Western Blotting/métodos , Línea Celular , Movimiento Celular/efectos de los fármacos , Quimiocina CCL2/deficiencia , Interacciones Farmacológicas , Ensayo de Inmunoadsorción Enzimática/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Etiquetado Corte-Fin in Situ/métodos , Ácido Kaínico , Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/patología , Factores de Tiempo , Transfección
14.
Cell Rep ; 22(7): 1935-1944, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29444443

RESUMEN

Mammalian mtDNA encodes only 13 proteins, all essential components of respiratory complexes, synthesized by mitochondrial ribosomes. Mitoribosomes contain greatly truncated RNAs transcribed from mtDNA, including a structural tRNA in place of 5S RNA as a scaffold for binding 82 nucleus-encoded proteins, mitoribosomal proteins (MRPs). Cryoelectron microscopy (cryo-EM) studies have determined the structure of the mitoribosome, but its mechanism of assembly is unknown. Our SILAC pulse-labeling experiments determine the rates of mitochondrial import of MRPs and their assembly into intact mitoribosomes, providing a basis for distinguishing MRPs that bind at early and late stages in mitoribosome assembly to generate a working model for mitoribosome assembly. Mitoribosome assembly is a slow process initiated at the mtDNA nucleoid driven by excess synthesis of individual MRPs. MRPs that are tightly associated in the structure frequently join the complex in a coordinated manner. Clinically significant MRP mutations reported to date affect proteins that bind early on during assembly.


Asunto(s)
Mamíferos/metabolismo , Ribosomas Mitocondriales/metabolismo , Animales , Células HeLa , Humanos , Marcaje Isotópico , Cinética , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas/metabolismo
15.
DNA Repair (Amst) ; 5(1): 121-8, 2006 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-16202665

RESUMEN

Mammalian DNA polymerase gamma, the sole polymerase responsible for replication and repair of mitochondrial DNA, contains a large catalytic subunit and a smaller accessory subunit, pol gammaB. In addition to the polymerase domain, the large subunit contains a 3'-5' editing exonuclease domain as well as a dRP lyase activity that can remove a 5'-deoxyribosephosphate (dRP) group during base excision repair. We show that the accessory subunit enhances the ability of the catalytic subunit to function in base excision repair mainly by stimulating two subreactions in the repair process. Pol gammaB appeared to specifically enhance the rate at which pol gamma was able to locate damage in high molecular weight DNA. One pol gammaB point mutant known to have impaired ability to bind duplex DNA stimulated repair poorly, suggesting that duplex DNA binding through pol gammaB may help the catalytic subunit locate sites of DNA damage. In addition, the small subunit significantly stimulated the dRP lyase activity of pol gammaA, although it did not increase the rate at which the dRP group dissociated from the enzyme. The ability of DNA pol gamma to process a high load of damaged DNA may be compromised by the slow release of the dRP group.


Asunto(s)
Reparación del ADN/fisiología , ADN Polimerasa Dirigida por ADN/metabolismo , Animales , Dominio Catalítico , Células Cultivadas , ADN Polimerasa gamma , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Humanos , Mutagénesis , Mutación , Liasas de Fósforo-Oxígeno/metabolismo , Subunidades de Proteína , Ribosamonofosfatos/metabolismo
16.
Methods Mol Biol ; 1351: 67-79, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26530675

RESUMEN

Isolation of mitochondria from cultured cells and animal tissues for analysis of nucleic acids and bona fide mitochondrial nucleic acid binding proteins and enzymes is complicated by contamination with cellular nucleic acids and their adherent proteins. Protocols presented here allow for quick isolation of mitochondria from a small number of cells and for preparation of highly purified mitochondria from a larger number of cells using nuclease treatment and high salt washing of mitochondria to reduce contamination. We further describe a method for the isolation of mitochondrial DNA-protein complexes known as nucleoids from these highly purified mitochondria using a combination of glycerol gradient sedimentation followed by isopycnic centrifugation in a non-ionic iodixanol gradient.


Asunto(s)
Centrifugación por Gradiente de Densidad/métodos , Centrifugación Isopicnica/métodos , ADN Mitocondrial/análisis , Proteínas de Unión al ADN/análisis , ARN/análisis , Animales , Línea Celular , Núcleo Celular/genética , ADN Mitocondrial/genética , ADN Mitocondrial/aislamiento & purificación , Proteínas de Unión al ADN/aislamiento & purificación , Células HeLa , Humanos , Mitocondrias/enzimología , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/química , ARN/genética , ARN/aislamiento & purificación , ARN Mitocondrial , Ácidos Triyodobenzoicos/química
19.
Cell Metab ; 19(4): 618-29, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24703694

RESUMEN

Mammalian mitochondrial DNA (mtDNA) resides in compact nucleoids, where it is replicated and transcribed into long primary transcripts processed to generate rRNAs, tRNAs, and mRNAs encoding 13 proteins. This situation differs from bacteria and eukaryotic nucleoli, which have dedicated rRNA transcription units. The assembly of rRNAs into mitoribosomes has received little study. We show that mitochondrial RNA processing enzymes involved in tRNA excision, ribonuclease P (RNase P) and ELAC2, as well as a subset of nascent mitochondrial ribosomal proteins (MRPs) associate with nucleoids to initiate RNA processing and ribosome assembly. SILAC pulse-chase labeling experiments show that nascent MRPs recruited to the nucleoid fraction were highly labeled after the pulse in a transcription-dependent manner and decreased in labeling intensity during the chase. These results provide insight into the landscape of binding events required for mitochondrial ribosome assembly and firmly establish the mtDNA nucleoid as a control center for mitochondrial biogenesis.


Asunto(s)
ADN Mitocondrial/fisiología , Mitocondrias/fisiología , Modelos Moleculares , Ribosomas/fisiología , Transcripción Genética/fisiología , Mitocondrias/química , Proteínas de Neoplasias/metabolismo , Unión Proteica , Proteómica , Ribonucleasa P/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/química
20.
Mol Cell Biol ; 31(24): 4994-5010, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22006021

RESUMEN

A fundamental objective in molecular biology is to understand how DNA is organized in concert with various proteins, RNA, and biological membranes. Mitochondria maintain and express their own DNA (mtDNA), which is arranged within structures called nucleoids. Their functions, dimensions, composition, and precise locations relative to other mitochondrial structures are poorly defined. Superresolution fluorescence microscopy techniques that exceed the previous limits of imaging within the small and highly compartmentalized mitochondria have been recently developed. We have improved and employed both two- and three-dimensional applications of photoactivated localization microscopy (PALM and iPALM, respectively) to visualize the core dimensions and relative locations of mitochondrial nucleoids at an unprecedented resolution. PALM reveals that nucleoids differ greatly in size and shape. Three-dimensional volumetric analysis indicates that, on average, the mtDNA within ellipsoidal nucleoids is extraordinarily condensed. Two-color PALM shows that the freely diffusible mitochondrial matrix protein is largely excluded from the nucleoid. In contrast, nucleoids are closely associated with the inner membrane and often appear to be wrapped around cristae or crista-like inner membrane invaginations. Determinations revealing high packing density, separation from the matrix, and tight association with the inner membrane underscore the role of mechanisms that regulate access to mtDNA and that remain largely unknown.


Asunto(s)
ADN Mitocondrial/química , Microscopía Fluorescente/métodos , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Células 3T3 , Animales , Ratones , Microscopía Confocal , Plásmidos , Alineación de Secuencia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA