RESUMEN
The reaction between 1,2,4,5-tetrazines and alkenes in polar solvents proceeds through a Diels-Alder cycloaddition along the C-C axis (C3/C6 cycloaddition) of the tetrazine, followed by dinitrogen loss. By contrast, the reactions of 1,2,4,5-tetrazines with enamines in hexafluoroisopropanol (HFIP) give 1,2,4-triazine products stemming from a formal Diels-Alder addition across the N-N axis (N1/N4 cycloaddition). We explored the mechanism of this interesting solvent effect through DFT calculations in detail and revealed a novel reaction pathway characterized by C-N bond formation, deprotonation, and a 3,3-sigmatropic rearrangement. The participation of an HFIP molecule was found to be crucial to the N1/N4 selectivity over C3/C6 due to the more favored initial C-N bond formation than C-C bond formation.
RESUMEN
Divergent total syntheses of binding pocket and peripherally modified tetrachlorovancomycins, a non-native synthetic glycopeptide, and their evaluation are disclosed. Central to the approach is the synthesis of a single late-stage intermediate that bears a residue 4 thioamide ([Ψ[C(âS)NH]Tpg4]tetrachlorovancomycin (3), LLS 15 steps, 14% overall) as a precursor to either of two key pocket modifications and their pairing with any combination of two peripheral modifications conducted without protecting groups. A stereochemical simplification achieved by the addition of two aryl chlorides removes two synthetically challenging atropisomer centers in native glycopeptides and streamlines the synthesis. Key features include in a convergent epimerization-free thioacylation of the AB ring system amine with an N-thioacylbenzotriazolyl DE tetrapeptide (85%) followed by simultaneous room-temperature SNAr macrocyclizations of the CD and DE ring systems (96%). The approach provided 3 from which [Ψ[C(âN)NH]Tpg4]tetrachlorovancomycin (4) and [Ψ(CH2NH)Tpg4]tetrachlorovancomycin (5) were prepared in a single-step and bear binding pocket modifications that convey dual d-Ala-d-Ala/d-Lac ligand binding to overcome vancomycin resistance. The newest maxamycin members are disclosed, bearing two additional peripheral modifications that introduce two independent synergistic MOAs that do not rely on native ligand binding for activity. Ligand binding properties of pocket-modified tetrachlorovancomycins 3-5, antibacterial activity of a key compound series, and PK assessments of two tetrachloromaxamycins are reported.
Asunto(s)
Antibacterianos , Antibacterianos/química , Antibacterianos/síntesis química , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , EstereoisomerismoRESUMEN
A technically straightforward total synthesis of a new class of vancomycin analogues of reduced synthetic complexity was developed that provided tetrachlorovancomycin (1, LLS = 15 steps, 15% overall yield) and its precursor aglycon 29 (nearly 20% overall yield). The class retains all the intricate vancomycin structural features that contribute to its target binding affinity and selectivity, maintains the antimicrobial activity of vancomycin, and achieves the simplification by an unusual addition, not removal, of benign substituents to the core structure. The modification, accomplished by addition of two aryl chloride substituents to provide 1, permitted a streamlined total synthesis of the new glycopeptide antibiotic class by removing the challenges associated with CD and DE ring system atropisomer stereochemical control. This also enabled their simultaneous and further-activated SNAr macrocyclizations that establish the tricyclic skeleton of 1. Key elements of the approach include catalyst-controlled diastereoselective formation of the AB biaryl axis of chirality (>30:1 dr), an essentially instantaneous macrolactamization of the AB ring system free of competitive epimerization (>30:1 dr), racemization free coupling of the E ring tetrapeptide, room temperature simultaneous CD and DE ring system cyclizations, a highly refined 4-step conversion of the cyclization product to the aglycon, and a protecting-group-free one-pot enzymatic glycosylation for disaccharide introduction. In addition to the antimicrobial evaluation of tetrachlorovancomycin (1), the preparation of key peripherally modified derivatives, which introduce independent and synergistic mechanisms of action, revealed their exceptional antimicrobial potency and provide the foundation for future use of this new class of synthetic glycopeptide analogues.
RESUMEN
A new streamlined and scaled divergent total synthesis of pocket-modified vancomycin analogs is detailed that provides a common late-stage intermediate [Ψ[C(âS)NH]Tpg4]vancomycin (LLS = 18 steps, 12% overall yield, >5 g prepared) to access both existing and future pocket modifications. Highlights of the approach include an atroposelective synthesis of [Ψ[C(âS)NH]Tpg4]vancomycin aglycon (11), a one-pot enzymatic glycosylation for direct conversion to [Ψ[C(âS)NH]Tpg4]vancomycin (12), and new powerful methods for the late-stage conversion of the embedded thioamide to amidine/aminomethylene pocket modifications. Incorporation of two peripheral modifications provides a scalable total synthesis of the maxamycins, all prepared from aglycon 11 without use of protecting groups. Thus, both existing and presently unexplored pocket-modified analogues paired with a range of peripheral modifications are accessible from this common thioamide intermediate. In addition to providing an improved synthesis of the initial member of the maxamycins, this is illustrated herein with the first synthesis and examination of maxamycins that contain the most effective of the pocket modifications (amidine) described to date combined with two additional peripheral modifications. These new amidine-based maxamycins proved to be potent, durable, and efficacious antimicrobial agents that display equipotent activity against vancomycin-sensitive and vancomycin-resistant Gram-positive organisms and act by three independent synergistic mechanisms of action. In the first such study conducted to date, one new maxamycin (21, MX-4) exhibited efficacious in vivo activity against a feared and especially challenging multidrug-resistant (MRSA) and vancomycin-resistant (VRSA) S. aureus bacterial strain (VanA VRS-2) for which vancomycin is inactive.
Asunto(s)
Antibacterianos , Vancomicina , Staphylococcus aureus/metabolismo , Bacterias/metabolismo , Pruebas de Sensibilidad MicrobianaRESUMEN
Modifications to the enzymatic glycosylation of vancomycin and its residue 4 thioamide analogue are detailed that significantly reduce the enzyme loading and amount of glycosyl donor needed for each glycosylation reaction, provide a streamlined synthesis and replacement for the synthetic UDP-vancosamine glycosyl donor to improve both access and storage stability, and permit a single-pot, two-step conversion of the aglycons to the fully glycosylated synthetic glycopeptides now conducted at higher concentrations. The improvements are exemplified with the two-step, one-pot glycosylation of [Ψ[C(=S)NH]Tpg4]vancomycin aglycon (92%) conducted on a 400 mg scale (2 mg to 1 g scales) and vancomycin aglycon itself (5 mg scale, 84%).
RESUMEN
A powerful tris(4-bromophenyl)aminium hexachloroantimonate (BAHA) mediated regioselective intermolecular coupling reaction of vindoline with a wide range of substrates that include ß-ketoesters, ß-diketones, ß-ketoaldehydes, ß-ketonitriles, ß-ketolactones, ß-ketolactams, ß-cyanoesters, and malononitriles is detailed. The BAHA-promoted intermolecular sp3/sp2 coupling, representing a special class of selective C-H functionalization reactions with direct carbon-carbon bond formation, proceeds with generation of a quaternary center bound to the aryl C15 center of vindoline capable of accommodating of the vinblastine C16' methyl ester and functionalized for subsequent divergent heterocycle introduction. A comprehensive examination of the reaction scope, optimization of subtle reaction parameters, and key insights into the reaction mechanism are described. Contrary to what might be prevailing expectations, studies suggest the plausible mechanism entails initial single-electron oxidation of the substrate enolate, not vindoline, and subsequent regiospecific addition of the resulting electrophilic radical to vindoline. As such and beyond the new arylation reaction with vindoline, the studies define a host of new, previously unrecognized, applications of BAHA and related triarylaminium radical cations that arises from their ability to generate stabilized electrophilic radicals from ß-ketoesters and related substrates under nonreducing and metal-free conditions. Those exemplified herein include mediating stabilized enolate free radical arylation, dimerization, allylation, alkene addition, and α-oxidation reactions.
Asunto(s)
Vinblastina/análogos & derivadosRESUMEN
1,2,3-Triazines and 1,2,3,5-tetrazines react rapidly, efficiently, and selectively with amidines to form pyrimidines/1,3,5-triazines, exhibiting an orthogonal reactivity with 1,2,4,5-tetrazine-based conjugation chemistry. Whereas the mechanism of the reaction of the isomeric 1,2,4-triazines and 1,2,4,5-tetrazines with alkenes is well understood, the mechanism of the 1,2,3-triazine/1,2,3,5-tetrazine-amidine reaction as well as its intrinsic reactivity remains underexplored. By using 15N-labeling, kinetic investigations, and kinetic isotope effect studies, complemented by extensive computational investigations, we show that this reaction proceeds through an addition/N2 elimination/cyclization pathway, rather than the generally expected concerted or stepwise Diels-Alder/retro Diels-Alder sequence. The rate-limiting step in this transformation is the initial nucleophilic attack of an amidine on azine C4, with a subsequent energetically favored N2 elimination step compared with a disfavored stepwise formation of a Diels-Alder cycloadduct. The proposed reaction mechanism is in agreement with experimental and computational results, which explains the observed reactivity of 1,2,3-triazines and 1,2,3,5-tetrazines with amidines.
Asunto(s)
Amidinas , Triazinas , Ciclización , Reacción de Cicloadición , Estructura Molecular , PirimidinasRESUMEN
Activity-based protein profiling (ABPP) has been used extensively to discover and optimize selective inhibitors of enzymes. Here, we show that ABPP can also be implemented to identify the converse-small-molecule enzyme activators. Using a kinetically controlled, fluorescence polarization-ABPP assay, we identify compounds that stimulate the activity of LYPLAL1-a poorly characterized serine hydrolase with complex genetic links to human metabolic traits. We apply ABPP-guided medicinal chemistry to advance a lead into a selective LYPLAL1 activator suitable for use in vivo. Structural simulations coupled to mutational, biochemical and biophysical analyses indicate that this compound increases LYPLAL1's catalytic activity likely by enhancing the efficiency of the catalytic triad charge-relay system. Treatment with this LYPLAL1 activator confers beneficial effects in a mouse model of diet-induced obesity. These findings reveal a new mode of pharmacological regulation for this large enzyme family and suggest that ABPP may aid discovery of activators for additional enzyme classes.
Asunto(s)
Activadores de Enzimas/química , Activadores de Enzimas/farmacología , Lisofosfolipasa/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Descubrimiento de Drogas , Activadores de Enzimas/farmacocinética , Polarización de Fluorescencia , Células HEK293 , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Resistencia a la Insulina , Lisofosfolipasa/química , Lisofosfolipasa/genética , Masculino , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/metabolismo , Ratones Endogámicos C57BL , Ratones Obesos , Simulación de Dinámica Molecular , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacocinética , Relación Estructura-ActividadRESUMEN
Herein, the first use of perfluoroalcohol H-bonding in accelerating acyclic azadiene inverse electron demand cycloaddition reactions is described, and its use in the promotion of heterocyclic azadiene cycloaddition reactions is generalized through examination of a complete range of azadienes. The scope of dienophiles was comprehensively explored; relative reactivity trends and solvent compatibilities were established with respect to the dienophile as well as azadiene; H-bonding solvent effects that lead to rate enhancements, yield improvements, and their impact on regioselectivity and mode of cycloaddition are defined; new viable diene/dienophile reaction partners in the cycloaddition reactions are disclosed; and key comparison rate constants are reported. The perfluoroalcohol effectiveness at accelerating an inverse electron demand Diels-Alder cycloaddition is directly correlated with its H-bond potential (pKa). Not only are the reactions of electron-rich dienophiles accelerated but those of strained and even unactivated alkenes and alkynes are improved, including representative bioorthogonal click reactions.
Asunto(s)
Alquenos , Alquinos , Reacción de Cicloadición , Enlace de Hidrógeno , Solventes , Alquenos/química , Alquinos/químicaRESUMEN
The second example of selective N1/N4 1,4-cycloaddition (vs C3/C6 1,4-cycloaddition) of 1,2,4,5-tetrazines with preformed or in situ generated enamines now promoted by the Lewis acid ZnCl2 and with an expanded scope is described. The reaction constitutes a formal [4 + 2] cycloaddition across two nitrogen atoms (N1/N4 vs C3/C6) of a 1,2,4,5-tetrazine followed by retro [4 + 2] cycloaddition loss of a nitrile and aromatization to provide 1,2,4-triazines. Optimization of reaction parameters, simplification of its implementation through in situ enamine generation from ketones, definition of the enamine reaction scope for 3,6-bis(thiomethyl)-1,2,4,5-tetrazine, exploration of the 1,2,4,5-tetrazine scope, and representative applications of the product 1,2,4-triazines are detailed. The work establishes and further extends a powerful method for efficient one-step regioselective synthesis of 1,2,4-triazines under mild reaction conditions directly now from easily accessible ketones. It extends the substrate scope of a solvent (hexafluoroisopropanol) hydrogen bonding-promoted reaction that we recently reported with aryl-conjugated enamines, permitting the use of simple ketone-derived enamines and expanding the generality of the remarkable reaction. The reaction is regioselective with respect to the site of reaction with unsymmetrical ketones and provides exclusively a single 1,2,4-triazine regioisomer consistent with our previously established stepwise mechanism of formal N1/N4 1,4-cycloaddition, overcoming the challenges observed in conventional approaches to 1,2,4-triazines.
Asunto(s)
Ácidos de Lewis , Triazinas , Compuestos Aza , Derivados del Benceno , Reacción de Cicloadición , CetonasRESUMEN
Despite the explosion of interest in heterocyclic azadienes, 1,2,3,5-tetrazines remain unexplored. Herein, the first general synthesis of this new class of heterocycles is disclosed. Its use in the preparation of a series of derivatives, and the first study of substituent effects on their cycloaddition reactivity, mode, and regioselectivity provide the foundation for future use. Their reactions with amidine, electron-rich, and strained dienophiles reveal unique fundamental reactivity patterns (4,6-dialkyl-1,2,3,5-tetrazines > 4,6-diaryl-1,2,3,5-tetrazines for amidines but slower with strained dienophiles), an exclusive C4/N1 mode of cycloaddition, and dominant alkyl versus aryl control on regioselectivity. An orthogonal reactivity of 1,2,3,5-tetrazines and the well-known isomeric 1,2,4,5-tetrazines is characterized, and detailed kinetic and mechanistic investigations of the remarkably fast reaction of 1,2,3,5-tetrazines with amidines, especially 4,6-dialkyl-1,2,3,5-tetrazines, established the mechanistic origins underlying the reactivity patterns and key features needed for future applications.
Asunto(s)
Compuestos Heterocíclicos , Reacción de Cicloadición , Electrones , Cinética , AmidinasRESUMEN
A total synthesis of (-)-strempeliopine is disclosed that enlists a powerful SmI2-mediated and BF3·OEt2-initiated dearomative transannular radical cyclization onto an indole by an N-acyl α-aminoalkyl radical that is derived by single electron reduction of an in situ generated iminium ion for formation of a quaternary center and the strategic C19-C2 bond in its core structure.
Asunto(s)
Alcaloides Indólicos/síntesis química , Ciclización , Alcaloides Indólicos/química , Conformación Molecular , EstereoisomerismoRESUMEN
Since its discovery, vancomycin has been used in the clinic for >60 years. Because of their durability, vancomycin and related glycopeptides serve as the antibiotics of last resort for the treatment of protracted bacterial infections of resistant Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant (MDR) Streptococcus pneumoniae. After 30 years of use, vancomycin resistance was first observed and is now widespread in enterococci and more recently in S. aureus. The widespread prevalence of vancomycin-resistant enterococci (VRE) and the emergence of vancomycin-resistant S. aureus (VRSA) represent a call to focus on the challenge of resistance, highlight the need for new therapeutics, and provide the inspiration for the design of more durable antibiotics less prone to bacterial resistance than even vancomycin.Herein we summarize progress on efforts to overcome vancomycin resistance, first addressing recovery of its original durable mechanism of action and then introducing additional independent mechanisms of action intended to increase the potency and durability beyond that of vancomycin itself. The knowledge of the origin of vancomycin resistance and an understanding of the molecular basis of the loss of binding affinity between vancomycin and the altered target ligand d-Ala-d-Lac provided the basis for the subtle and rational redesign of the vancomycin binding pocket to remove the destabilizing lone-pair repulsion or reintroduce a lost H-bond while not impeding binding to the unaltered ligand d-Ala-d-Ala. Preparation of the modified glycopeptide core structure was conducted by total synthesis, providing binding pocket-modified vancomycin aglycons with dual d-Ala-d-Ala/d-Lac binding properties that directly address the intrinsic mechanism of resistance to vancomycin. Fully glycosylated pocket-modified vancomycin analogues were generated through a subsequent two-step enzymatic glycosylation, providing a starting point for peripheral modifications used to introduce additional mechanisms of action. A well-established vancosamine N-(4-chlorobiphenyl)methyl (CBP) modification as well as newly discovered C-terminal trimethylammonium cation (C1) or guanidine modifications were introduced, providing two additional synergistic mechanisms of action independent of d-Ala-d-Ala/d-Lac binding. The CBP modification provides an additional stage for inhibition of cell wall synthesis that results from direct competitive inhibition of transglycosylase, whereas the C1/guanidine modification induces bacteria cell permeablization. The synergistic behavior of the three independent mechanisms of action combined in a single molecule provides ultrapotent antibiotics (MIC = 0.01-0.005 µg/mL against VanA VRE). Beyond the remarkable antimicrobial activity, the multiple mechanisms of action suppress the rate at which resistance may be selected, where any single mechanism of action is protected by the action of others. The results detailed herein show that rational targeting of durable vancomycin-derived antibiotics has generated compounds with a "resistance against resistance", provided new candidate antibiotics, and may serve as a generalizable strategy to combat antibacterial resistance.
Asunto(s)
Antibacterianos/química , Diseño de Fármacos , Vancomicina/análogos & derivados , Antibacterianos/síntesis química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Sitios de Unión , Dipéptidos/química , Dipéptidos/metabolismo , Glicopéptidos/química , Glicopéptidos/metabolismo , Guanidina/química , Semivida , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Vancomicina/síntesis química , Vancomicina/metabolismo , Vancomicina/farmacología , Resistencia a la Vancomicina/efectos de los fármacosRESUMEN
Therapeutic gene delivery to hematopoietic stem cells (HSCs) holds great potential as a life-saving treatment of monogenic, oncologic, and infectious diseases. However, clinical gene therapy is severely limited by intrinsic HSC resistance to modification with lentiviral vectors (LVs), thus requiring high doses or repeat LV administration to achieve therapeutic gene correction. Here we show that temporary coapplication of the cyclic resveratrol trimer caraphenol A enhances LV gene delivery efficiency to human and nonhuman primate hematopoietic stem and progenitor cells with integrating and nonintegrating LVs. Although significant ex vivo, this effect was most dramatically observed in human lineages derived from HSCs transplanted into immunodeficient mice. We further show that caraphenol A relieves restriction of LV transduction by altering the levels of interferon-induced transmembrane (IFITM) proteins IFITM2 and IFITM3 and their association with late endosomes, thus augmenting LV core endosomal escape. Caraphenol A-mediated IFITM downregulation did not alter the LV integration pattern or bias lineage differentiation. Taken together, these findings compellingly demonstrate that the pharmacologic modification of intrinsic immune restriction factors is a promising and nontoxic approach for improving LV-mediated gene therapy.
Asunto(s)
Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/virología , Proteínas de la Membrana/efectos de los fármacos , Resveratrol/farmacología , Transducción Genética/métodos , Animales , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Vectores Genéticos , Xenoinjertos , Humanos , Lentivirus , Proteínas de la Membrana/metabolismo , Ratones , Transporte de Proteínas/efectos de los fármacosRESUMEN
A comprehensive study of the reaction scope of methyl 1,2,3-triazine-5-carboxylate (3a) with alkyl and aryl amidines is disclosed, reacting at room temperature at remarkable rates (<5 min, 0.1 M in CH3CN) nearly 10000-fold faster than that of unsubstituted 1,2,3-triazine and providing the product pyrimidines in high yields. C4 Methyl substitution of the 1,2,3-triazine (3b) had little effect on the rate of the reaction, whereas C4/C6 dimethyl substitution (3c) slowed the room-temperature reaction (<24 h, 0.25 M) but displayed an unaltered scope, providing the product pyrimidines in similarly high yields. Measured second-order rate constants of the reaction of 3a-c, the corresponding nitriles 3e and 3f, and 1,2,3-triazine itself (3d) with benzamidine and substituted derivatives quantitated the remarkable reactivity of 3a and 3e, verified the inverse electron demand nature of the reaction (Hammett ρ = -1.50 for substituted amidines, ρ = +7.9 for 5-substituted 1,2,3-triazine), and provided a quantitative measure of the impact of 4-methyl and 4,6-dimethyl substitution on the reactivity of the methyl 1,2,3-triazine-5-carboxylate and 5-cyano-1,2,3-triazine core heterocycles.
Asunto(s)
Amidinas , Triazinas , Ácidos Carboxílicos , Electrones , PirimidinasRESUMEN
A concise total synthesis of (-)-4-desacetoxy-1-oxovindoline is disclosed, bearing a single heteroatom exchange in the core structure of the natural product 4-desacetoxyvindoline. Central to the synthesis is powerful oxadiazole intramolecular [4+2]/[3+2] cycloaddition cascade that formed four C-C bonds, created three new rings, and established five contiguous stereocenters about the new formed central 6-membered ring.
RESUMEN
Cysteine-directed covalent ligands have emerged as a versatile category of chemical probes and drugs that leverage thiol nucleophilicity to form permanent adducts with proteins of interest. Understanding the scope of cysteines that can be targeted by covalent ligands, as well as the types of electrophiles that engage these residues, represent important challenges for fully realizing the potential of cysteine-directed chemical probe discovery. Although chemical proteomic strategies have begun to address these important questions, only a limited number of electrophilic chemotypes have been explored to date. Here, we describe a diverse set of candidate electrophiles appended to a common core 6-methoxy-1,2,3,4-tetrahydroquinoline fragment and evaluate their global cysteine reactivity profiles in human cancer cell proteomes. This work uncovered atypical reactivity patterns for a discrete set of cysteines, including residues involved in enzymatic catalysis and located in proximity to protein-protein interactions. These findings thus point to potentially preferred electrophilic groups for site-selectively targeting functional cysteines in the human proteome.
RESUMEN
Successful cancer immunotherapy entails activation of innate immune receptors to promote dendritic cell (DC) maturation, antigen presentation, up-regulation of costimulatory molecules, and cytokine secretion, leading to activation of tumor antigen-specific cytotoxic T lymphocytes (CTLs). Here we screened a synthetic library of 100,000 compounds for innate immune activators using TNF production by THP-1 cells as a readout. We identified and optimized a potent human and mouse Toll-like receptor (TLR)1/TLR2 agonist, Diprovocim, which exhibited an EC50 of 110 pM in human THP-1 cells and 1.3 nM in primary mouse peritoneal macrophages. In mice, Diprovocim-adjuvanted ovalbumin immunization promoted antigen-specific humoral and CTL responses and synergized with anti-PD-L1 treatment to inhibit tumor growth, generating long-term antitumor memory, curing or prolonging survival of mice engrafted with the murine melanoma B16-OVA. Diprovocim induced greater frequencies of tumor-infiltrating leukocytes than alum, of which CD8 T cells were necessary for the antitumor effect of immunization plus anti-PD-L1 treatment.
Asunto(s)
Adyuvantes Inmunológicos/farmacología , Anticuerpos Monoclonales/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Melanoma Experimental/terapia , Receptor Toll-Like 1/agonistas , Receptor Toll-Like 2/agonistas , Animales , Anticuerpos Monoclonales/inmunología , Antígeno B7-H1/inmunología , Línea Celular Tumoral , Células Cultivadas , Sinergismo Farmacológico , Humanos , Inmunoterapia/métodos , Estimación de Kaplan-Meier , Melanoma Experimental/genética , Melanoma Experimental/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Ovalbúmina/inmunología , Células THP-1 , Receptor Toll-Like 1/genética , Receptor Toll-Like 1/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismoRESUMEN
A comprehensive SAR study of a putative TLR 3/8/9 agonist was conducted. Despite the excitement surrounding the potential of the first small molecule TLR3 agonist with a compound that additionally displayed agonist activity for TLR8 and TLR9, compound 1 displayed disappointing activity in our hands, failing to match the potency (EC50) reported and displaying only a low efficacy for the extent of stimulated NF-κB activation and release. The evaluation of >75 analogs of 1, many of which constitute minor modifications in the structure, failed to identify any that displayed significant activity and none that exceeded the modest activity found for 1.
RESUMEN
An unprecedented 1,4-cycloaddition (vs 3,6-cycloaddition) of 1,2,4,5-tetrazines is described with preformed or in situ generated aryl-conjugated enamines promoted by the solvent hydrogen bonding of hexafluoroisopropanol (HFIP) that is conducted under mild reaction conditions (0.1 M HFIP, 25 °C, 12 h). The reaction constitutes a formal [4 + 2] cycloaddition across the two nitrogen atoms (N1/N4) of the 1,2,4,5-tetrazine followed by a formal retro [4 + 2] cycloaddition loss of a nitrile and aromatization to generate a 1,2,4-triazine derivative. The factors that impact the remarkable change in the reaction mode, optimization of reaction parameters, the scope and simplification of its implementation through in situ enamine generation from aldehydes and ketones, the reaction scope for 3,6-bis(thiomethyl)-1,2,4,5-tetrazine, a survey of participating 1,2,4,5-tetrazines, and key mechanistic insights into this reaction are detailed. Given its simplicity and breath, the study establishes a novel method for the simple and efficient one-step synthesis of 1,2,4-triazines under mild conditions from readily accessible starting materials. Whereas alternative protic solvents (e.g., MeOH vs HFIP) provide products of the conventional 3,6-cycoladdition, the enhanced hydrogen bonding capability of HFIP uniquely results in promotion of the unprecedented formal 1,4-cycloaddition. As such, the studies represent an example of not just an enhancement in the rate or efficiency of a heterocyclic azadiene cycloaddition by hydrogen bonding catalysis but also the first to alter the mode (N1/N4 vs C3/C6) of cycloaddition.