Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nucleic Acids Res ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39149885

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder representing a major burden on families and society. Some of the main pathological hallmarks of AD are the accumulation of amyloid plaques (Aß) and tau neurofibrillary tangles. However, it is still unclear how Aß and tau aggregates promote specific phenotypic outcomes and lead to excessive oxidative DNA damage, neuronal cell death and eventually to loss of memory. Here we utilized a Caenorhabditis elegans (C. elegans) model of human tauopathy to investigate the role of DNA glycosylases in disease development and progression. Transgenic nematodes expressing a pro-aggregate form of tau displayed altered mitochondrial content, decreased lifespan, and cognitive dysfunction. Genetic ablation of either of the two DNA glycosylases found in C. elegans, NTH-1 and UNG-1, improved mitochondrial function, lifespan, and memory impairment. NTH-1 depletion resulted in a dramatic increase of differentially expressed genes, which was not apparent in UNG-1 deficient nematodes. Our findings clearly show that in addition to its enzymatic activity, NTH-1 has non-canonical functions highlighting its modulation as a potential therapeutic intervention to tackle tau-mediated pathology.

2.
Alzheimers Dement ; 20(6): 4212-4233, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38753870

RESUMEN

BACKGROUND: Compromised autophagy, including impaired mitophagy and lysosomal function, plays pivotal roles in Alzheimer's disease (AD). Urolithin A (UA) is a gut microbial metabolite of ellagic acid that stimulates mitophagy. The effects of UA's long-term treatment of AD and mechanisms of action are unknown. METHODS: We addressed these questions in three mouse models of AD with behavioral, electrophysiological, biochemical, and bioinformatic approaches. RESULTS: Long-term UA treatment significantly improved learning, memory, and olfactory function in different AD transgenic mice. UA also reduced amyloid beta (Aß) and tau pathologies and enhanced long-term potentiation. UA induced mitophagy via increasing lysosomal functions. UA improved cellular lysosomal function and normalized lysosomal cathepsins, primarily cathepsin Z, to restore lysosomal function in AD, indicating the critical role of cathepsins in UA-induced therapeutic effects on AD. CONCLUSIONS: Our study highlights the importance of lysosomal dysfunction in AD etiology and points to the high translational potential of UA. HIGHLIGHTS: Long-term urolithin A (UA) treatment improved learning, memory, and olfactory function in Alzheimer's disease (AD) mice. UA restored lysosomal functions in part by regulating cathepsin Z (Ctsz) protein. UA modulates immune responses and AD-specific pathophysiological pathways.


Asunto(s)
Enfermedad de Alzheimer , Cumarinas , Modelos Animales de Enfermedad , Lisosomas , Ratones Transgénicos , Mitofagia , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Cumarinas/farmacología , Cumarinas/uso terapéutico , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones , Mitofagia/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Cognición/efectos de los fármacos
3.
Free Radic Biol Med ; 222: 569-578, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39009245

RESUMEN

Mitophagy is a mechanism that maintains mitochondrial integrity and homeostasis and is thought to promote longevity and reduce the risk of age-related neurodegenerative diseases, including Alzheimer's disease (AD). Here, we investigate the abundance of mitochondrial reactive oxygen species (ROS), mitochondrial function, and mitophagy in primary fibroblasts from patients with sporadic AD (sAD) and normal healthy controls. The results show increased levels of mitochondrial ROS, changes in mitochondrial morphology, altered bioenergetic properties, and defects in autophagy, mitophagy, and lysosome-mediated degradation pathways in sAD fibroblasts relative to control fibroblasts. Interestingly, lysosome abundance and the staining of lysosomal markers remained high, while the capacity of lysosome-dependent degradation was lower in sAD fibroblasts than in controls fibroblasts. Nicotinamide riboside supplementation decreased mitochondrial ROS, while capacity for lysosomal degradation remained unchanged in sAD fibroblasts relative to healthy control fibroblasts. These findings provide insight into molecular mechanisms involving the dysregulation of lysosome and autophagy/mitophagy pathways that may contribute significantly to clinical signs and pathological features of sAD.

4.
Aging Biol ; 12024.
Artículo en Inglés | MEDLINE | ID: mdl-38500536

RESUMEN

There is considerable interest in whether sensory deficiency is associated with the development of Alzheimer's disease (AD). Notably, the relationship between hearing impairment and AD is of high relevance but still poorly understood. In this study, we found early-onset hearing loss in two AD mouse models, 3xTgAD and 3xTgAD/Polß+/-. The 3xTgAD/Polß+/- mouse is DNA repair deficient and has more humanized AD features than the 3xTgAD. Both AD mouse models showed increased auditory brainstem response (ABR) thresholds between 16 and 32 kHz at 4 weeks of age, much earlier than any AD cognitive and behavioral changes. The ABR thresholds were significantly higher in 3xTgAD/Polß+/- mice than in 3xTgAD mice at 16 kHz, and distortion product otoacoustic emission signals were reduced, indicating that DNA damage may be a factor underlying early hearing impairment in AD. Poly ADP-ribosylation and protein expression levels of DNA damage markers increased significantly in the cochlea of the AD mice but not in the adjacent auditory cortex. Phosphoglycerate mutase 2 levels and the number of synaptic ribbons in the presynaptic zones of inner hair cells were decreased in the cochlea of the AD mice. Furthermore, the activity of sirtuin 3 was downregulated in the cochlea of these mice, indicative of impaired mitochondrial function. Taken together, these findings provide new insights into potential mechanisms for hearing dysfunction in AD and suggest that DNA damage in the cochlea might contribute to the development of early hearing loss in AD.

5.
Nat Commun ; 15(1): 7144, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39164296

RESUMEN

FOXO transcription factors modulate aging-related pathways and influence longevity in multiple species, but the transcriptional targets that mediate these effects remain largely unknown. Here, we identify an evolutionarily conserved FOXO target gene, Oxidative stress-responsive serine-rich protein 1 (OSER1), whose overexpression extends lifespan in silkworms, nematodes, and flies, while its depletion correspondingly shortens lifespan. In flies, overexpression of OSER1 increases resistance to oxidative stress, starvation, and heat shock, while OSER1-depleted flies are more vulnerable to these stressors. In silkworms, hydrogen peroxide both induces and is scavenged by OSER1 in vitro and in vivo. Knockdown of OSER1 in Caenorhabditis elegans leads to increased ROS production and shorter lifespan, mitochondrial fragmentation, decreased ATP production, and altered transcription of mitochondrial genes. Human proteomic analysis suggests that OSER1 plays roles in oxidative stress response, cellular senescence, and reproduction, which is consistent with the data and suggests that OSER1 could play a role in fertility in silkworms and nematodes. Human studies demonstrate that polymorphic variants in OSER1 are associated with human longevity. In summary, OSER1 is an evolutionarily conserved FOXO-regulated protein that improves resistance to oxidative stress, maintains mitochondrial functional integrity, and increases lifespan in multiple species. Additional studies will clarify the role of OSER1 as a critical effector of healthy aging.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteínas de Drosophila , Factores de Transcripción Forkhead , Longevidad , Estrés Oxidativo , Animales , Longevidad/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Caenorhabditis elegans/metabolismo , Humanos , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Bombyx/genética , Bombyx/metabolismo , Bombyx/fisiología , Drosophila melanogaster/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica
6.
Artículo en Inglés | MEDLINE | ID: mdl-38289789

RESUMEN

Unhealthy aging poses a global challenge with profound healthcare and socioeconomic implications. Slowing down the aging process offers a promising approach to reduce the burden of a number of age-related diseases, such as dementia, and promoting healthy longevity in the old population. In response to the challenge of the aging population and with a view to the future, Norway and the United Kingdom are fostering collaborations, supported by a "Money Follows Cooperation agreement" between the 2 nations. The inaugural Norway-UK joint meeting on aging and dementia gathered leading experts on aging and dementia from the 2 nations to share their latest discoveries in related fields. Since aging is an international challenge, and to foster collaborations, we also invited leading scholars from 11 additional countries to join this event. This report provides a summary of the conference, highlighting recent progress on molecular aging mechanisms, genetic risk factors, DNA damage and repair, mitophagy, autophagy, as well as progress on a series of clinical trials (eg, using NAD+ precursors). The meeting facilitated dialogue among policymakers, administrative leaders, researchers, and clinical experts, aiming to promote international research collaborations and to translate findings into clinical applications and interventions to advance healthy aging.


Asunto(s)
Envejecimiento , Demencia , Humanos , Anciano , Longevidad , Demencia/prevención & control , Demencia/epidemiología , Reino Unido , Noruega
7.
Front Aging Neurosci ; 15: 1290681, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38161589

RESUMEN

Ataxia with oculomotor apraxia type 1 (AOA1) is a progressive neurodegenerative disorder characterized by a gradual loss of coordination of hand movements, speech, and eye movements. AOA1 is caused by an inactivation mutation in the APTX gene. APTX resolves abortive DNA ligation intermediates. APTX deficiency may lead to the accumulation of 5'-AMP termini, especially in the mitochondrial genome. The consequences of APTX deficiency includes impaired mitochondrial function, increased DNA single-strand breaks, elevated reactive oxygen species production, and altered mitochondrial morphology. All of these processes can cause misplacement of nuclear and mitochondrial DNA, which can activate innate immune sensors to elicit an inflammatory response. This study explores the impact of APTX knockout in microglial cells, the immune cells of the brain. RNA-seq analysis revealed significant differences in the transcriptomes of wild-type and APTX knockout cells, especially in response to viral infections and innate immune pathways. Specifically, genes and proteins involved in the cGAS-STING and RIG-I/MAVS pathways were downregulated in APTX knockout cells, which suggests an impaired immune response to cytosolic DNA and RNA. The clinical relevance of these findings was supported by analyzing publicly available RNA-seq data from AOA1 patient cell lines. Comparisons between APTX-deficient patient cells and healthy control cells also revealed altered immune responses and dysregulated DNA- and RNA-sensing pathways in the patient cells. Overall, this study highlights the critical role of APTX in regulating innate immunity, particularly in DNA- and RNA-sensing pathways. Our findings contribute to a better understanding of the underlying molecular mechanisms of AOA1 pathology and highlights potential therapeutic targets for this disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA