Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 144(21): 3917-3931, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28939666

RESUMEN

During corticogenesis, distinct classes of neurons are born from progenitor cells located in the ventricular and subventricular zones, from where they migrate towards the pial surface to assemble into highly organized layer-specific circuits. However, the precise and coordinated transcriptional network activity defining neuronal identity is still not understood. Here, we show that genetic depletion of the basic helix-loop-helix (bHLH) transcription factor E2A splice variant E47 increased the number of Tbr1-positive deep layer and Satb2-positive upper layer neurons at E14.5, while depletion of the alternatively spliced E12 variant did not affect layer-specific neurogenesis. While ChIP-Seq identified a big overlap for E12- and E47-specific binding sites in embryonic NSCs, including sites at the cyclin-dependent kinase inhibitor (CDKI) Cdkn1c gene locus, RNA-Seq revealed a unique transcriptional regulation by each splice variant. E47 activated the expression of the CDKI Cdkn1c through binding to a distal enhancer. Finally, overexpression of E47 in embryonic NSCs in vitro impaired neurite outgrowth, and overexpression of E47 in vivo by in utero electroporation disturbed proper layer-specific neurogenesis and upregulated p57(KIP2) expression. Overall, this study identifies E2A target genes in embryonic NSCs and demonstrates that E47 regulates neuronal differentiation via p57(KIP2).


Asunto(s)
Empalme Alternativo/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Corteza Cerebral/embriología , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Neuronas/citología , Factor de Transcripción 3/metabolismo , Animales , Secuencia de Bases , Sitios de Unión/genética , Ciclo Celular/genética , Corteza Cerebral/citología , Cromatina/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Unión Proteica , Factor de Transcripción 3/deficiencia , Transcripción Genética
2.
EMBO J ; 34(22): 2804-19, 2015 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-26438726

RESUMEN

Adult neural stem/precursor cells (NSPCs) of the subventricular zone (SVZ) are an endogenous source for neuronal replacement in CNS disease. However, adult neurogenesis is compromised after brain injury in favor of a glial cell fate, which is mainly attributed to changes in the NSPC environment. Yet, it is unknown how this unfavorable extracellular environment translates into a transcriptional program altering NSPC differentiation. Here, we show that genetic depletion of the transcriptional regulator Id3 decreased the number of astrocytes generated from SVZ-derived adult NSPCs in the cortical lesion area after traumatic brain injury. Cortical brain injury resulted in rapid BMP-2 and Id3 up-regulation in the SVZ stem cell niche. Id3(-/-) adult NSPCs failed to differentiate into BMP-2-induced astrocytes, while NSPCs deficient for the Id3-controlled transcription factor E47 readily differentiated into astrocytes in the absence of BMP-2. Mechanistically, E47 repressed the expression of several astrocyte-specific genes in adult NSPCs. These results identify Id3 as the BMP-2-induced transcriptional regulator, promoting adult NSPC differentiation into astrocytes upon CNS injury and reveal a molecular link between environmental changes and NSPC differentiation in the CNS after injury.


Asunto(s)
Células Madre Adultas/metabolismo , Astrocitos/metabolismo , Diferenciación Celular , Proteínas Inhibidoras de la Diferenciación/metabolismo , Células-Madre Neurales/metabolismo , Factor de Transcripción 3/metabolismo , Células Madre Adultas/patología , Animales , Astrocitos/patología , Proteína Morfogenética Ósea 2/biosíntesis , Proteína Morfogenética Ósea 2/genética , Lesiones Encefálicas/genética , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Corteza Cerebral/lesiones , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Proteínas Inhibidoras de la Diferenciación/genética , Ratones , Ratones Noqueados , Células-Madre Neurales/patología , Factor de Transcripción 3/genética , Regulación hacia Arriba
3.
Nat Commun ; 11(1): 630, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32005867

RESUMEN

Neural stem/progenitor cells (NSPCs) originating from the subventricular zone (SVZ) contribute to brain repair during CNS disease. The microenvironment within the SVZ stem cell niche controls NSPC fate. However, extracellular factors within the niche that trigger astrogliogenesis over neurogenesis during CNS disease are unclear. Here, we show that blood-derived fibrinogen is enriched in the SVZ niche following distant cortical brain injury in mice. Fibrinogen inhibited neuronal differentiation in SVZ and hippocampal NSPCs while promoting astrogenesis via activation of the BMP receptor signaling pathway. Genetic and pharmacologic depletion of fibrinogen reduced astrocyte formation within the SVZ after cortical injury, reducing the contribution of SVZ-derived reactive astrocytes to lesion scar formation. We propose that fibrinogen is a regulator of NSPC-derived astrogenesis from the SVZ niche via BMP receptor signaling pathway following injury.


Asunto(s)
Astrocitos/citología , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Fibrinógeno/metabolismo , Ventrículos Laterales/citología , Células-Madre Neurales/citología , Neurogénesis , Animales , Astrocitos/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Proteínas Morfogenéticas Óseas/metabolismo , Regulación de la Expresión Génica , Hipocampo/citología , Hipocampo/metabolismo , Ventrículos Laterales/metabolismo , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/metabolismo , Transducción de Señal
4.
Neurogenesis (Austin) ; 3(1): e1223532, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27882335

RESUMEN

The adult central nervous system (CNS) was considered a comparatively static tissue with little cell turnover. It is now well established that there is more plasticity than previously thought and that astrocytes act as neural stem/precursor cells (NSPCs) in the subventricular zone (SVZ). The discovery that these NSPCs can give rise to a limited number of new neurons, reactive astrocytes and oligodendrocytes contributing to brain repair in CNS disease, has raised hopes toward harnessing these cells for therapeutic interventions. Here, we will discuss the transcriptional control of adult NSPC differentiation into astrocytes in CNS disease focusing on the helix-loop-helix transcription factor protein family. In our recent study, we reported that elevated BMP-2 levels are translated into an increase in Id3 expression in adult NSPC subpopulations after cortical injury. Id3 then heterodimerizes with the basic helix-loop-helix transcription factor E47 and releases the E47-mediated repression of astrocyte-specific gene expression. Consequently, adult NSPCs preferentially differentiate into astrocytes. We believe that understanding the in vivo differentiation potential and the molecular underpinnings of NSPCs in the adult mammalian brain will help us to evaluate their contributions to brain repair and may lead to new concepts in treating human CNS diseases.

5.
J Vis Exp ; (71)2013 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-23380713

RESUMEN

Astrocytes are an abundant cell type in the mammalian brain, yet much remains to be learned about their molecular and functional characteristics. In vitro astrocyte cell culture systems can be used to study the biological functions of these glial cells in detail. This video protocol shows how to obtain pure astrocytes by isolation and culture of mixed cortical cells of mouse pups. The method is based on the absence of viable neurons and the separation of astrocytes, oligodendrocytes and microglia, the three main glial cell populations of the central nervous system, in culture. Representative images during the first days of culture demonstrate the presence of a mixed cell population and indicate the timepoint, when astrocytes become confluent and should be separated from microglia and oligodendrocytes. Moreover, we demonstrate purity and astrocytic morphology of cultured astrocytes using immunocytochemical stainings for well established and newly described astrocyte markers. This culture system can be easily used to obtain pure mouse astrocytes and astrocyte-conditioned medium for studying various aspects of astrocyte biology.


Asunto(s)
Astrocitos/citología , Corteza Cerebral/citología , Técnicas Citológicas/métodos , Animales , Ratones , Microglía/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA