Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Circ Res ; 124(12): 1808-1820, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-30971183

RESUMEN

RATIONALE: Altered gut microbial composition has been linked to cardiovascular diseases (CVDs), but its functional links to host metabolism and immunity in relation to CVD development remain unclear. OBJECTIVES: To systematically assess functional links between the microbiome and the plasma metabolome, cardiometabolic phenotypes, and CVD risk and to identify diet-microbe-metabolism-immune interactions in well-documented cohorts. METHODS AND RESULTS: We assessed metagenomics-based microbial associations between 231 plasma metabolites and microbial species and pathways in the population-based LLD (Lifelines DEEP) cohort (n=978) and a clinical obesity cohort (n=297). After correcting for age, sex, and body mass index, the gut microbiome could explain ≤11.1% and 16.4% of the variation in plasma metabolites in the population-based and obesity cohorts, respectively. Obese-specific microbial associations were found for lipid compositions in the VLDL, IDL, and LDL lipoprotein subclasses. Bacterial L-methionine biosynthesis and a Ruminococcus species were associated to cardiovascular phenotypes in obese individuals, namely atherosclerosis and liver fat content, respectively. Integration of microbiome-diet-inflammation analysis in relation to metabolic risk score of CVD in the population cohort revealed 48 microbial pathways associated to CVD risk that were largely independent of diet and inflammation. Our data also showed that plasma levels rather than fecal levels of short-chain fatty acids were relevant to inflammation and CVD risk. CONCLUSIONS: This study presents the largest metagenome-based association study on plasma metabolism and microbiome relevance to diet, inflammation, CVD risk, and cardiometabolic phenotypes in both population-based and clinical obesity cohorts. Our findings identified novel bacterial species and pathways that associated to specific lipoprotein subclasses and revealed functional links between the gut microbiome and host health that provide a basis for developing microbiome-targeted therapy for disease prevention and treatment.


Asunto(s)
Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/metabolismo , Microbioma Gastrointestinal/fisiología , Metaboloma/fisiología , Obesidad/epidemiología , Obesidad/metabolismo , Adulto , Anciano , Enfermedades Cardiovasculares/genética , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Países Bajos/epidemiología , Obesidad/genética , Fenotipo , Estudios Prospectivos , Factores de Riesgo
2.
Diabetologia ; 61(2): 354-368, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29164275

RESUMEN

AIMS/HYPOTHESIS: Epigenetic mechanisms may play an important role in the aetiology of type 2 diabetes. Recent epigenome-wide association studies (EWASs) identified several DNA methylation markers associated with type 2 diabetes, fasting glucose and HbA1c levels. Here we present a systematic review of these studies and attempt to replicate the CpG sites (CpGs) with the most significant associations from these EWASs in a case-control sample of the Lifelines study. METHODS: We performed a systematic literature search in PubMed and EMBASE for EWASs to test the association between DNA methylation and type 2 diabetes and/or glycaemic traits and reviewed the search results. For replication purposes we selected 100 unique CpGs identified in peripheral blood, pancreas, adipose tissue and liver from 15 EWASs, using study-specific Bonferroni-corrected significance thresholds. Methylation data (Illumina 450K array) in whole blood from 100 type 2 diabetic individuals and 100 control individuals from the Lifelines study were available. Multivariate linear models were used to examine the associations of the specific CpGs with type 2 diabetes and glycaemic traits. RESULTS: From the 52 CpGs identified in blood and selected for replication, 15 CpGs showed nominally significant associations with type 2 diabetes in the Lifelines sample (p < 0.05). The results for five CpGs (in ABCG1, LOXL2, TXNIP, SLC1A5 and SREBF1) remained significant after a stringent multiple-testing correction (changes in methylation from -3% up to 3.6%, p < 0.0009). All associations were directionally consistent with the original EWAS results. None of the selected CpGs from the tissue-specific EWASs were replicated in our methylation data from whole blood. We were also unable to replicate any of the CpGs associated with HbA1c levels in the healthy control individuals of our sample, while two CpGs (in ABCG1 and CCDC57) for fasting glucose were replicated at a nominal significance level (p < 0.05). CONCLUSIONS/INTERPRETATION: A number of differentially methylated CpGs reported to be associated with type 2 diabetes in the EWAS literature were replicated in blood and show promise for clinical use as disease biomarkers. However, more prospective studies are needed to support the robustness of these findings.


Asunto(s)
Metilación de ADN/genética , Diabetes Mellitus Tipo 2/genética , Glucemia/metabolismo , Islas de CpG/genética , Diabetes Mellitus Tipo 2/sangre , Epigénesis Genética/genética , Ayuno/sangre , Estudio de Asociación del Genoma Completo , Hemoglobina Glucada/metabolismo , Humanos
3.
Am J Hum Genet ; 97(1): 75-85, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26119815

RESUMEN

We tested whether DNA-methylation profiles account for inter-individual variation in body mass index (BMI) and height and whether they predict these phenotypes over and above genetic factors. Genetic predictors were derived from published summary results from the largest genome-wide association studies on BMI (n ∼ 350,000) and height (n ∼ 250,000) to date. We derived methylation predictors by estimating probe-trait effects in discovery samples and tested them in external samples. Methylation profiles associated with BMI in older individuals from the Lothian Birth Cohorts (LBCs, n = 1,366) explained 4.9% of the variation in BMI in Dutch adults from the LifeLines DEEP study (n = 750) but did not account for any BMI variation in adolescents from the Brisbane Systems Genetic Study (BSGS, n = 403). Methylation profiles based on the Dutch sample explained 4.9% and 3.6% of the variation in BMI in the LBCs and BSGS, respectively. Methylation profiles predicted BMI independently of genetic profiles in an additive manner: 7%, 8%, and 14% of variance of BMI in the LBCs were explained by the methylation predictor, the genetic predictor, and a model containing both, respectively. The corresponding percentages for LifeLines DEEP were 5%, 9%, and 13%, respectively, suggesting that the methylation profiles represent environmental effects. The differential effects of the BMI methylation profiles by age support previous observations of age modulation of genetic contributions. In contrast, methylation profiles accounted for almost no variation in height, consistent with a mainly genetic contribution to inter-individual variation. The BMI results suggest that combining genetic and epigenetic information might have greater utility for complex-trait prediction.


Asunto(s)
Estatura/genética , Metilación de ADN/genética , Obesidad/genética , Fenotipo , Adolescente , Adulto , Análisis de Varianza , Índice de Masa Corporal , Estudios de Cohortes , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Persona de Mediana Edad , Modelos Genéticos , Países Bajos , Escocia
4.
Diabetologia ; 59(5): 998-1006, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26825526

RESUMEN

AIMS/HYPOTHESIS: Tobacco smoking, a risk factor for diabetes, is an established modifier of DNA methylation. We hypothesised that tobacco smoking modifies DNA methylation of genes previously identified for diabetes. METHODS: We annotated CpG sites available on the Illumina Human Methylation 450K array to diabetes genes previously identified by genome-wide association studies (GWAS), and investigated them for an association with smoking by comparing current to never smokers. The discovery study consisted of 630 individuals (Bonferroni-corrected p = 1.4 × 10(-5)), and we sought replication in an independent sample of 674 individuals. The replicated sites were tested for association with nearby genetic variants and gene expression and fasting glucose and insulin levels. RESULTS: We annotated 3,620 CpG sites to the genes identified in the GWAS on type 2 diabetes. Comparing current smokers to never smokers, we found 12 differentially methylated CpG sites, of which five replicated: cg23161492 within ANPEP (p = 1.3 × 10(-12)); cg26963277 (p = 1.2 × 10(-9)), cg01744331 (p = 8.0 × 10(-6)) and cg16556677 (p = 1.2 × 10(-5)) within KCNQ1 and cg03450842 (p = 3.1 × 10(-8)) within ZMIZ1. The effect of smoking on DNA methylation at the replicated CpG sites attenuated after smoking cessation. Increased DNA methylation at cg23161492 was associated with decreased gene expression levels of ANPEP (p = 8.9 × 10(-5)). rs231356-T, which was associated with hypomethylation of cg26963277 (KCNQ1), was associated with a higher odds of diabetes (OR 1.06, p = 1.3 × 10(-5)). Additionally, hypomethylation of cg26963277 was associated with lower fasting insulin levels (p = 0.04). CONCLUSIONS/INTERPRETATION: Tobacco smoking is associated with differential DNA methylation of the diabetes risk genes ANPEP, KCNQ1 and ZMIZ1. Our study highlights potential biological mechanisms connecting tobacco smoking to excess risk of type 2 diabetes.


Asunto(s)
Metilación de ADN/genética , Diabetes Mellitus Tipo 2/genética , Fumar/efectos adversos , Anciano , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad
5.
Nucleic Acids Res ; 40(Web Server issue): W82-7, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22618877

RESUMEN

Amplicon sequencing of the hypervariable regions of the small subunit ribosomal RNA gene is a widely accepted method for identifying the members of complex bacterial communities. Several rRNA gene sequence reference databases can be used to assign taxonomic names to the sequencing reads using BLAST, USEARCH, GAST or the RDP classifier. Next-generation sequencing methods produce ample reads, but they are short, currently ∼100-450 nt (depending on the technology), as compared to the full rRNA gene of ∼1550 nt. It is important, therefore, to select the right rRNA gene region for sequencing. The primers should amplify the species of interest and the hypervariable regions should differentiate their taxonomy. Here, we introduce TaxMan: a web-based tool that trims reference sequences based on user-selected primer pairs and returns an assessment of the primer specificity by taxa. It allows interactive plotting of taxa, both amplified and missed in silico by the primers used. Additionally, using the trimmed sequences improves the speed of sequence matching algorithms. The smaller database greatly improves run times (up to 98%) and memory usage, not only of similarity searching (BLAST), but also of chimera checking (UCHIME) and of clustering the reads (UCLUST). TaxMan is available at http://www.ibi.vu.nl/programs/taxmanwww/.


Asunto(s)
Código de Barras del ADN Taxonómico , Genes de ARNr , Programas Informáticos , Código de Barras del ADN Taxonómico/normas , Bases de Datos de Ácidos Nucleicos , Humanos , Internet , Estándares de Referencia
6.
Bioinformatics ; 28(22): 2891-7, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22962346

RESUMEN

MOTIVATION: Massively parallel sequencing allows for rapid sequencing of large numbers of sequences in just a single run. Thus, 16S ribosomal RNA (rRNA) amplicon sequencing of complex microbial communities has become possible. The sequenced 16S rRNA fragments (reads) are clustered into operational taxonomic units and taxonomic categories are assigned. Recent reports suggest that data pre-processing should be performed before clustering. We assessed combinations of data pre-processing steps and clustering algorithms on cluster accuracy for oral microbial sequence data. RESULTS: The number of clusters varied up to two orders of magnitude depending on pre-processing. Pre-processing using both denoising and chimera checking resulted in a number of clusters that was closest to the number of species in the mock dataset (25 versus 15). Based on run time, purity and normalized mutual information, we could not identify a single best clustering algorithm. The differences in clustering accuracy among the algorithms after the same pre-processing were minor compared with the differences in accuracy among different pre-processing steps. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. CONTACT: bonder.m.j@gmail.com or b.brandt@acta.nl


Asunto(s)
Algoritmos , Bacterias/clasificación , Análisis por Conglomerados , ARN Ribosómico 16S/genética , Bacterias/genética , Técnicas de Tipificación Bacteriana/métodos , ADN Bacteriano/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Saliva/química
7.
Nat Med ; 27(9): 1564-1575, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34426706

RESUMEN

Mitochondrial DNA (mtDNA) variants influence the risk of late-onset human diseases, but the reasons for this are poorly understood. Undertaking a hypothesis-free analysis of 5,689 blood-derived biomarkers with mtDNA variants in 16,220 healthy donors, here we show that variants defining mtDNA haplogroups Uk and H4 modulate the level of circulating N-formylmethionine (fMet), which initiates mitochondrial protein translation. In human cytoplasmic hybrid (cybrid) lines, fMet modulated both mitochondrial and cytosolic proteins on multiple levels, through transcription, post-translational modification and proteolysis by an N-degron pathway, abolishing known differences between mtDNA haplogroups. In a further 11,966 individuals, fMet levels contributed to all-cause mortality and the disease risk of several common cardiovascular disorders. Together, these findings indicate that fMet plays a key role in common age-related disease through pleiotropic effects on cell proteostasis.


Asunto(s)
Biomarcadores/sangre , Enfermedades Cardiovasculares/genética , ADN Mitocondrial/genética , Mitocondrias/genética , Edad de Inicio , Donantes de Sangre , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/epidemiología , ADN Mitocondrial/sangre , Femenino , Estudios de Seguimiento , Haplotipos/genética , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/patología , N-Formilmetionina/metabolismo , Proteostasis , Factores de Riesgo , Reino Unido/epidemiología
8.
PLoS One ; 7(8): e42770, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22900048

RESUMEN

Currently there are no evidence-based ecological measures for prevention of overgrowth and subsequent infection by fungi in the oral cavity. The aim of this study was to increase our knowledge on fungal-bacterial ecological interactions. Salivary Candida abundance of 82 Dutch adults aged 58-80 years was established relative to the bacterial load by quantitative PCR analysis of the Internal Transcribed (ITS) region (Candida) and 16S rDNA gene (bacteria). The salivary microbiome was assessed using barcoded pyrosequencing of the bacterial hypervariable regions V5-V7 of 16S rDNA. Sequencing data was preprocessed by denoising and chimera removal, clustered in Operational Taxonomic Units (OTUs) and assigned to taxonomy. Both OTU-based (PCA, diversity statistics) and phylogeny-based analyses (UniFrac, PCoA) were performed. Saliva of Dutch older adults contained 0-4 × 10(8) CFU/mL Candida with a median Candida load of 0.06%. With increased Candida load the diversity of the salivary microbiome decreased significantly (p<0.001). Increase in the Candida load correlated positively with class Bacilli, and negatively with class Fusobacteria, Flavobacteria, and Bacteroidia. Microbiomes with high Candida load were less diverse and had a distinct microbial composition towards dominance by saccharolytic and acidogenic bacteria--streptococci. The control of the acidification of the oral environment may be a potential preventive measure for Candida outgrowth that should be evaluated in longitudinal clinical intervention trials.


Asunto(s)
Bacterias/genética , Candida/genética , Metagenoma , Boca/microbiología , Población Blanca , Anciano , Anciano de 80 o más Años , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Biodiversidad , Candida/clasificación , Candida/crecimiento & desarrollo , ADN Espaciador Ribosómico/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Países Bajos , ARN Ribosómico 16S/genética , Saliva/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA