Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 298(3): 101632, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35085551

RESUMEN

Both the DNA damage response (DDR) and the mitotic checkpoint are critical for the maintenance of genomic stability. Among proteins involved in these processes, the ataxia-telangiectasia mutated (ATM) kinase is required for both activation of the DDR and the spindle assembly checkpoint (SAC). In mitosis without DNA damage, the enzymatic activity of ATM is enhanced; however, substrates of ATM in mitosis are unknown. Using stable isotope labeling of amino acids in cell culture mass spectrometry analysis, we identified a number of proteins that can potentially be phosphorylated by ATM during mitosis. This list is highly enriched in proteins involved in cell cycle regulation and the DDR. Among them, we further validated that ATM phosphorylated budding uninhibited by benzimidazoles 3 (Bub3), a major component of the SAC, on serine 135 (Ser135) both in vitro and in vivo. During mitosis, this phosphorylation promoted activation of another SAC component, benzimidazoles 1. Mutation of Bub3 Ser135 to alanine led to a defect in SAC activation. Furthermore, we found that ATM-mediated phosphorylation of Bub3 on Ser135 was also induced by ionizing radiation-induced DNA damage. However, this event resulted in independent signaling involving interaction with the Ku70-Ku80-DNA-PKcs sensor/kinase complex, leading to efficient nonhomologous end-joining repair. Taken together, we highlight the functional significance of the crosstalk between the kinetochore-oriented signal and double-strand break repair pathways via ATM phosphorylation of Bub3 on Ser135.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular , Daño del ADN , Mitosis , Proteínas de Unión a Poli-ADP-Ribosa , Huso Acromático , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Bencimidazoles/farmacología , Proteínas de Ciclo Celular/metabolismo , Humanos , Puntos de Control de la Fase M del Ciclo Celular , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Serina/metabolismo , Huso Acromático/metabolismo
2.
Cancer Cell Int ; 23(1): 60, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37016369

RESUMEN

The alpha-fetoprotein receptor (AFPR) is a novel target for cancer therapeutics. It is expressed on most cancers and myeloid derived suppressor cells (MDSCs) but generally absent on normal tissues. Studies were performed to investigate the use of recombinant human AFP (ACT-101) conjugated with maytansinoid toxins for targeted toxin delivery to cancer. Four structurally different ACT-101-maytansinoid conjugates containing cleavable glutathione sensitive linkers were initially investigated in a mouse xenograft model of colorectal cancer. Reduction in tumor volume was seen for all four conjugates compared to control (p < 0.05). The anti-tumor effects of the conjugate selected for further development (ACT-903) persisted after treatment discontinuation, with tumors becoming undetectable in 9 of 10 mice, and all 10 mice surviving through Day 60 with no obvious signs of toxicity. A follow-up study performed in the same model compared the effects of single intravenous doses of ACT-903 (10-50 mg/kg) to that of control groups receiving vehicle or ACT-101. A significant reduction of tumor burden compared to control was achieved in the 40 and 50 mg/kg dose groups. Survival was significantly prolonged in these 2 groups (40 mg/kg (p < 0.0001); 50 mg/kg (p = 0.0037). Free maytansine blood levels at 4 h were 0.008% of the dose, indicating stability of the conjugate in circulation as was expected based on in vitro plasma stability studies. No obvious signs of toxicity were seen in any of the treated groups. Observed efficacy and excellent tolerability of ACT-903 in these xenograft models support advancing the development of ACT-903 toward clinical use.

3.
Infect Immun ; 86(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29311239

RESUMEN

Host genotype influences the severity of murine Lyme borreliosis, caused by the spirochetal bacterium Borrelia burgdorferi C57BL/6 (B6) mice develop mild Lyme arthritis, whereas C3H/HeN (C3H) mice develop severe Lyme arthritis. Differential expression of interleukin 10 (IL-10) has long been associated with mouse strain differences in Lyme pathogenesis; however, the underlying mechanism(s) of this genotype-specific IL-10 regulation remained elusive. Herein we reveal a cAMP-mediated mechanism of IL-10 regulation in B6 macrophages that is substantially diminished in C3H macrophages. Under cAMP and CD14-p38 mitogen-activated protein kinase (MAPK) signaling, B6 macrophages stimulated with B. burgdorferi produce increased amounts of IL-10 and decreased levels of arthritogenic cytokines, including tumor necrosis factor (TNF). cAMP relaxes chromatin, while p38 increases binding of the transcription factors signal transducer and activator of transcription 3 (STAT3) and specific protein 1 (SP1) to the IL-10 promoter, leading to increased IL-10 production in B6 bone marrow-derived monocytes (BMDMs). Conversely, macrophages derived from arthritis-susceptible C3H mice possess significantly less endogenous cAMP, produce less IL-10, and thus are ill equipped to mitigate the damaging consequences of B. burgdorferi-induced TNF. Intriguingly, an altered balance between anti-inflammatory and proinflammatory cytokines and CD14-dependent regulatory mechanisms also is operative in primary human peripheral blood-derived monocytes, providing potential insight into the clinical spectrum of human Lyme disease. In line with this notion, we have demonstrated that cAMP-enhancing drugs increase IL-10 production in myeloid cells, thus curtailing inflammation associated with murine Lyme borreliosis. Discovery of novel treatments or repurposing of FDA-approved cAMP-modulating medications may be a promising avenue for treatment of patients with adverse clinical outcomes, including certain post-Lyme complications, in whom dysregulated immune responses may play a role.


Asunto(s)
Borrelia burgdorferi/fisiología , Ensamble y Desensamble de Cromatina , AMP Cíclico/metabolismo , Interleucina-10/metabolismo , Enfermedad de Lyme/metabolismo , Enfermedad de Lyme/microbiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Artritis/etiología , Artritis/metabolismo , Artritis/patología , Ensamble y Desensamble de Cromatina/genética , Citocinas/genética , Citocinas/metabolismo , Perfilación de la Expresión Génica , Interleucina-10/genética , Receptores de Lipopolisacáridos/metabolismo , Enfermedad de Lyme/genética , Enfermedad de Lyme/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/microbiología , Regiones Promotoras Genéticas , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción Sp1/metabolismo , Activación Transcripcional
4.
Biochem J ; 473(8): 1027-35, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26846349

RESUMEN

Historically, drugs used in the treatment of cancers also tend to cause damage to healthy cells while affecting cancer cells. Therefore, the identification of novel agents that act specifically against cancer cells remains a high priority in the search for new therapies. In contrast with normal cells, most cancer cells contain multiple centrosomes which are associated with genome instability and tumorigenesis. Cancer cells can avoid multipolar mitosis, which can cause cell death, by clustering the extra centrosomes into two spindle poles, thereby enabling bipolar division. Kinesin-like protein KIFC1 plays a critical role in centrosome clustering in cancer cells, but is not essential for normal cells. Therefore, targeting KIFC1 may provide novel insight into selective killing of cancer cells. In the present study, we identified a small-molecule KIFC1 inhibitor, SR31527, which inhibited microtubule (MT)-stimulated KIFC1 ATPase activity with an IC50 value of 6.6 µM. By using bio layer interferometry technology, we further demonstrated that SR31527 bound directly to KIFC1 with high affinity (Kd=25.4 nM). Our results from computational modelling and saturation-transfer difference (STD)-NMR experiments suggest that SR31527 bound to a novel allosteric site of KIFC1 that appears suitable for developing selective inhibitors of KIFC1. Importantly, SR31527 prevented bipolar clustering of extra centrosomes in triple negative breast cancer (TNBC) cells and significantly reduced TNBC cell colony formation and viability, but was less toxic to normal fibroblasts. Therefore, SR31527 provides a valuable tool for studying the biological function of KIFC1 and serves as a potential lead for the development of novel therapeutic agents for breast cancer treatment.


Asunto(s)
Descubrimiento de Drogas , Cinesinas/antagonistas & inhibidores , Cinesinas/metabolismo , Tiadiazoles/química , Tiadiazoles/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas/métodos , Humanos , Cinesinas/química , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Tiadiazoles/farmacología
5.
Cancer Res ; 83(22): 3739-3752, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37695315

RESUMEN

Pancreatic cancer is a highly lethal disease with obesity as one of the risk factors. Oncogenic KRAS mutations are prevalent in pancreatic cancer and can rewire lipid metabolism by altering fatty acid (FA) uptake, FA oxidation (FAO), and lipogenesis. Identification of the underlying mechanisms could lead to improved therapeutic strategies for treating KRAS-mutant pancreatic cancer. Here, we observed that KRASG12D upregulated the expression of SLC25A1, a citrate transporter that is a key metabolic switch to mediate FAO, fatty acid synthesis, glycolysis, and gluconeogenesis. In genetically engineered mouse models and human pancreatic cancer cells, KRASG12D induced SLC25A1 upregulation via GLI1, which directly stimulated SLC25A1 transcription by binding its promoter. The enhanced expression of SLC25A1 increased levels of cytosolic citrate, FAs, and key enzymes in lipid metabolism. In addition, a high-fat diet (HFD) further stimulated the KRASG12D-GLI1-SLC25A1 axis and the associated increase in citrate and FAs. Pharmacologic inhibition of SLC25A1 and upstream GLI1 significantly suppressed pancreatic tumorigenesis in KrasG12D/+ mice on a HFD. These results reveal a KRASG12D-GLI1-SLC25A1 regulatory axis, with SLC25A1 as an important node that regulates lipid metabolism during pancreatic tumorigenesis, thus indicating an intervention strategy for oncogenic KRAS-driven pancreatic cancer. SIGNIFICANCE: Upregulation of SLC25A1 induced by KRASG12D-GLI1 signaling rewires lipid metabolism and is exacerbated by HFD to drive the development of pancreatic cancer, representing a targetable metabolic axis to suppress pancreatic tumorigenesis.


Asunto(s)
Metabolismo de los Lípidos , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Citratos , Ácidos Grasos , Metabolismo de los Lípidos/genética , Ratones Transgénicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo
6.
Cancers (Basel) ; 15(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36980623

RESUMEN

Epigenetic dysregulation characterized by aberrant DNA hypermethylation is a hallmark of cancer, and it can be targeted by hypomethylating agents (HMAs). Recently, we described the superior therapeutic efficacy of a novel HMA, namely, NTX-301, when used as a monotherapy and in combination with venetoclax in the treatment of acute myeloid leukemia. Following a previous study, we further explored the therapeutic properties of NTX-301 based on experimental investigations and integrative data analyses. Comprehensive sensitivity profiling revealed that NTX-301 primarily exerted anticancer effects against blood cancers and exhibited improved potency against a wide range of solid cancers. Subsequent assays showed that the superior efficacy of NTX-301 depended on its strong effects on cell cycle arrest, apoptosis, and differentiation. Due to its superior efficacy, low doses of NTX-301 achieved sufficiently substantial tumor regression in vivo. Multiomics analyses revealed the mechanisms of action (MoAs) of NTX-301 and linked these MoAs to markers of sensitivity to NTX-301 and to the demethylation activity of NTX-301 with high concordance. In conclusion, our findings provide a rationale for currently ongoing clinical trials of NTX-301 and will help guide the development of novel therapeutic options for cancer patients.

7.
Mol Pharm ; 9(7): 2080-93, 2012 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-22591113

RESUMEN

Defects in the apoptotic machinery can contribute to tumor formation and resistance to treatment, creating a need to identify new agents that kill cancer cells by alternative mechanisms. To this end, we examined the cytotoxic properties of a novel peptide, CT20p, derived from the C-terminal, alpha-9 helix of Bax, an amphipathic domain with putative membrane binding properties. Like many antimicrobial peptides, CT20p contains clusters of hydrophobic and cationic residues that could enable the peptide to associate with lipid membranes. CT20p caused the release of calcein from mitochondrial-like lipid vesicles without disrupting vesicle integrity and, when expressed as a fusion protein in cells, localized to mitochondria. The amphipathic nature of CT20p allowed it to be encapsulated in polymeric nanoparticles (NPs) that have the capacity to harbor targeting molecules, dyes or drugs. The resulting CT20p-NPs proved an effective killer, in vitro, of colon and breast cancer cells, and in vivo, using a murine breast cancer tumor model. By introducing CT20p to Bax deficient cells, we demonstrated that the peptide's lethal activity was independent of endogenous Bax. CT20p also caused an increase in the mitochondrial membrane potential that was followed by plasma membrane rupture and cell death, without the characteristic membrane asymmetry associated with apoptosis. We determined that cell death triggered by the CT20p-NPs was minimally dependent on effector caspases and resistant to Bcl-2 overexpression, suggesting that it acts independently of the intrinsic apoptotic death pathway. Furthermore, use of CT20p with the apoptosis-inducing drug, cisplatin, resulted in additive toxicity. These results reveal the novel features of CT20p that allow nanoparticle-mediated delivery to tumors and the potential application in combination therapies to activate multiple death pathways in cancer cells.


Asunto(s)
Muerte Celular/efectos de los fármacos , Péptidos/farmacología , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Caspasas/metabolismo , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Cisplatino/farmacología , Células HCT116 , Células HEK293 , Humanos , Células MCF-7 , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Nanopartículas/administración & dosificación , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
8.
Front Oncol ; 12: 975088, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185250

RESUMEN

Chaperonin containing TCP1 (CCT/TRiC) is a multi-subunit protein folding complex that enables the cancer phenotype to emerge from the mutational landscape that drives oncogenesis. We and others linked increased expression of CCT subunits to advanced tumor stage and invasiveness that inversely correlates with cancer patient outcomes. In this study, we examined the expression of the second CCT subunit, CCT2, using genomic databases of adult and pediatric tumors and normal tissues, and found that it was highly expressed in pediatric cancers, showing a significant difference compared to normal tissues. Histologic staining confirmed that CCT subunits are highly expressed in tumor tissues, which was exemplified in neuroblastoma. Using two neuroblastoma cells, MYCN-amplified, IMR-32 cells, and non-amplified, SK-N-AS cells, we assessed baseline levels for CCT subunits and found expressions comparable to the highly invasive triple-negative breast cancer (TNBC) cell line, MDA-MB-231. Exogenous expression of CCT2 in both SK-N-AS and IMR-32 cells resulted in morphological changes, such as larger cell size and increased adherence, with significant increases in the CCT substrates, actin, and tubulin, as well as increased migration. Depletion of CCT2 reversed these effects and reduced cell viability. We evaluated CCT as a therapeutic target in IMR-32 cells by testing a novel peptide CCT inhibitor, CT20p. Treatment with CT20p induced cell death in these neuroblastoma cells. The use of CCT2 as a biological indicator for detection of neuroblastoma cells shed in blood was examined by spiking IMR-32 cells into human blood and using an anti-CCT2 antibody for the identification of spiked cancer cells with the CellSearch system. Results showed that using CCT2 for the detection of neuroblastoma cells in blood was more effective than the conventional approach of using epithelial markers like cytokeratins. CCT2 plays an essential role in promoting the invasive capacity of neuroblastoma cells and thus offers the potential to act as a molecular target in the development of novel therapeutics and diagnostics for pediatric cancers.

9.
Am J Physiol Cell Physiol ; 300(6): C1466-78, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21289292

RESUMEN

The dual functionality of the tumor suppressor BAX is implied by the nonapoptotic functions of other members of the BCL-2 family. To explore this, mitochondrial metabolism was examined in BAX-deficient HCT-116 cells as well as primary hepatocytes from BAX-deficient mice. Although mitochondrial density and mitochondrial DNA content were the same in BAX-containing and BAX-deficient cells, MitoTracker staining patterns differed, suggesting the existence of BAX-dependent functional differences in mitochondrial physiology. Oxygen consumption and cellular ATP levels were reduced in BAX-deficient cells, while glycolysis was increased. These results suggested that cells lacking BAX have a deficiency in the ability to generate ATP through cellular respiration. This conclusion was supported by detection of reduced citrate synthase activity in BAX-deficient cells. In nonapoptotic cells, a portion of BAX associated with mitochondria and a sequestered, protease-resistant form was detected. Inhibition of BAX with small interfering RNAs reduced intracellular ATP content in BAX-containing cells. Expression of either full-length or COOH-terminal-truncated BAX in BAX-deficient cells rescued ATP synthesis and oxygen consumption and reduced glycolytic activity, suggesting that this metabolic function of BAX was not dependent upon its COOH-terminal helix. Expression of BCL-2 in BAX-containing cells resulted in a subsequent loss of ATP measured, implying that, even under nonapoptotic conditions, an antagonistic interaction exists between the two proteins. These findings infer that a basal amount of BAX is necessary to maintain energy production via aerobic respiration.


Asunto(s)
Apoptosis/fisiología , Respiración de la Célula/fisiología , Metabolismo Energético , Mitocondrias/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Técnicas de Silenciamiento del Gen , Hepatocitos/citología , Humanos , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C57BL , Consumo de Oxígeno , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína X Asociada a bcl-2/genética
10.
Front Oncol ; 11: 673154, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34113570

RESUMEN

GLI1 is a transcriptional effector at the terminal end of the Hedgehog signaling (Hh) pathway and is tightly regulated during embryonic development and tissue patterning/differentiation. GLI1 has low-level expression in differentiated tissues, however, in certain cancers, aberrant activation of GLI1 has been linked to the promotion of numerous hallmarks of cancer, such as proliferation, survival, angiogenesis, metastasis, metabolic rewiring, and chemotherapeutic resistance. All of these are driven, in part, by GLI1's role in regulating cell cycle, DNA replication and DNA damage repair processes. The consequences of GLI1 oncogenic activity, specifically the activity surrounding DNA damage repair proteins, such as NBS1, and cell cycle proteins, such as CDK1, can be linked to tumorigenesis and chemoresistance. Therefore, understanding the underlying mechanisms driving GLI1 dysregulation can provide prognostic and diagnostic biomarkers to identify a patient population that would derive therapeutic benefit from either direct inhibition of GLI1 or targeted therapy towards proteins downstream of GLI1 regulation.

11.
Front Oncol ; 10: 241, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32185127

RESUMEN

Resistance to radiation and chemotherapy in colorectal cancer (CRC) patients contribute significantly to refractory disease and disease progression. Herein, we provide mechanistic rationale for acquired or inherent chemotherapeutic resistance to the anti-tumor effects of 5-fluorouracil (5-FU) that is linked to oncogenic GLI1 transcription activity and NBS1 overexpression. Patients with high levels of GLI1 also expressed high levels of NBS1. Non-canonical activation of GLI1 is driven through oncogenic pathways in CRC, like the BRAFV600E mutation. GLI1 was identified as a novel regulator of NBS1 and discovered that by knocking down GLI1 levels in vitro, diminished NBS1 expression, increased DNA damage/apoptosis, and re-sensitization of 5-FU resistant cancer to treatment was observed. Furthermore, a novel GLI1 inhibitor, SRI-38832, which exhibited pharmacokinetic properties suitable for in vivo testing, was identified. GLI1 inhibition in a murine BRAFV600E variant xenograft model of CRC resulted in the same down-regulation of NBS1 observed in vitro as well as significant reduction of tumor growth/burden. GLI1 inhibition could therefore be a therapeutic option for 5-FU resistant and BRAFV600E variant CRC patients.

12.
Endocr Relat Cancer ; 26(1): 141-151, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30400007

RESUMEN

Anaplastic thyroid cancer (ATC) is an aggressive cancer with poor clinical prognosis. However, mechanisms driving ATC aggressiveness is not well known. Components of the DNA damage response (DDR) are frequently found mutated or aberrantly expressed in ATC. The goal of this study is to establish the functional link between histone acetyltransferase lysine (K) acetyltransferase 5 (KAT5, a critical DDR protein) and ATC invasiveness using clinical, in vitro and in vivo models. We analyzed the expression of KAT5 by immunohistochemistry and assessed its relationship with metastasis and overall survival in 82 ATC patients. Using cellular models, we established functional connection of KAT5 expression and C-MYC stabilization. We then studied the impact of genetically modified KAT5 expression on ATC metastasis in nude mice. In clinical samples, there is a strong correlation of KAT5 expression with ATC metastasis (P = 0.0009) and overall survival (P = 0.0017). At the cellular level, upregulation of KAT5 significantly promotes thyroid cancer cell proliferation and invasion. We also find that KAT5 enhances the C-MYC protein level by inhibiting ubiquitin-mediated degradation. Further evidence reveals that KAT5 acetylates and stabilizes C-MYC. Finally, we prove that altered KAT5 expression influences ATC lung metastases in vivo. KAT5 promotes ATC invasion and metastases through stabilization of C-MYC, demonstrating it as a new biomarker and therapeutic target for ATC.


Asunto(s)
Lisina Acetiltransferasa 5/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Carcinoma Anaplásico de Tiroides/metabolismo , Neoplasias de la Tiroides/metabolismo , Acetilación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Pulmonares/secundario , Lisina Acetiltransferasa 5/genética , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Pronóstico , Análisis de Supervivencia , Carcinoma Anaplásico de Tiroides/genética , Carcinoma Anaplásico de Tiroides/mortalidad , Carcinoma Anaplásico de Tiroides/patología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/mortalidad , Neoplasias de la Tiroides/patología , Adulto Joven
13.
Cancer Lett ; 434: 11-21, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-29920293

RESUMEN

We report here the rational design and validation of a peptide inhibitor to the PD-1/PD-L1 interaction as an attempt to develop a viable alternative to current inhibitory antibodies. We demonstrated, by biolayer interferometry and in silico docking simulations, that a PD-L1 peptide mimetic (PL120131) can interfere with the PD-1/PD-L1 interaction by binding to PD-1. We show that PL120131 is capable of inhibiting PD-1 mediated apoptotic signaling pathway and rescuing Jurkat cells and primary lymphocytes from apoptosis. Additionally, we show that PL120131 treatment allows for CTL anti-tumor activity. Furthermore, PL120131 can maintain co-culture survivability and activity of T Cells in a 3D co-culture model better than the anti-PD-1 blocking antibody. Together, the characterization of this PD-1/PD-L1 inhibiting peptide provides insight regarding the ability to inhibit PD-L1 binding while maintaining CTL viability and activity that can further the development of alternatives to antibody based immunotherapies.


Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Péptidos/farmacología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Antígeno B7-H1/química , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Células Cultivadas , Diseño de Fármacos , Humanos , Células Jurkat , Linfocitos/citología , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Ratones , Péptidos/química , Péptidos/metabolismo , Receptor de Muerte Celular Programada 1/química , Receptor de Muerte Celular Programada 1/metabolismo , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
14.
Oncotarget ; 8(48): 83975-83985, 2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-29137397

RESUMEN

Hexavalent chromium (Cr[VI]) is associated with occupational lung cancer and poses a significant public health concern. When exposed to Cr[VI], cells rapidly internalize this compound and metabolize it to Cr[III]. Byproducts of Cr[VI] metabolism include unstable Cr[V] and Cr[IV] intermediates that are believed to be directly responsible for the genotoxicity and carcinogenicity caused by Cr[VI] exposure; however, the carcinogenic potential of the Cr intermediates and the mechanisms of Cr-induced carcinogenesis remain to be further defined. Utilizing synthetic Cr[IV] and Cr[V] compounds, we demonstrate here that Cr[IV] or Cr[V] exposure induces DNA double-strand breaks; however, of the two compounds, mammalian cells only respond to Cr[V]-induced DNA damage. Exposure to Cr[V], but not Cr[IV], results in initiation of cell cycle checkpoints and activates the ATM kinase, a critical regulator of the DNA damage response. Furthermore, cells exposed to Cr[IV] have significantly increased mutation frequencies in the HPRT gene compared to cells exposed to Cr[V], indicating that Cr[IV] possesses a higher mutagenic potential than Cr[V]. We also find that MLH1, a critical mismatch repair (MMR) protein, is required for activation of the G2/M cell cycle checkpoint in response to Cr[VI] exposure and to limit Cr-induced mutagenesis. Our results provide evidence for Cr[IV] as the ultimate mutagenic intermediate produced during Cr[VI] metabolism and indicate that functional MMR is crucial in the cellular response to chromium exposure.

16.
Chem Biol Drug Des ; 88(2): 178-87, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26864917

RESUMEN

Mitotic kinesin Eg5 is an attractive anticancer drug target. Discovery of Eg5 inhibitors has been focused on targeting the 'monastrol-binding site'. However, acquired drug resistance has been reported for such inhibitors. Therefore, identifying new Eg5 inhibitors which function through a different mechanism(s) could complement current drug candidates and improve drug efficacy. In this study, we explored a novel allosteric site of Eg5 and identified new Eg5 inhibitors through structure-based virtual screening. Experiments with the saturation-transfer difference NMR demonstrated that the identified Eg5 inhibitor SRI35566 binds directly to Eg5 without involving microtubules. Moreover, SRI35566 and its two analogs significantly induced monopolar spindle formation in colorectal cancer HCT116 cells and suppressed cancer cell viability and colony formation. Together, our findings reveal a new allosteric regulation mechanism of Eg5 and a novel drug targeting site for cancer therapy.


Asunto(s)
Cinesinas/antagonistas & inhibidores , Regulación Alostérica , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Microscopía Confocal , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular
18.
Oncotarget ; 6(33): 34649-57, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26452218

RESUMEN

MicroRNA, a class of small non-coding RNAs, play critical roles in the cellular response to DNA damage induced by ionizing irradiation (IR). Growing evidence shows alteration of miRNAs, in response to radiation, controls cellular radiosensitivity in DNA damage response pathways. However, it is less clear about the clinical relevance of miRNA regulation in radiosensitivity. Using an in vitro system, we conducted microarray to identify a miRNA signature to assess radiosensitivity. The data were validated by analyzing available Head and Neck Squamous Cell Carcinoma (HNSCC) samples in the cancer genome atlas (TCGA) database. A total of 27 miRNAs showed differential alteration in response to IR in an Ataxia-Telangiectasia Mutated (ATM) kinase-dependent manner. We validated the list and identified a five miRNA signature that can predict radiation responsiveness in HNSCC. Furthermore, we found that the expression level of ATM in these patients was correlated with the radiation responsiveness. Together, we demonstrate the feasibility of using a miRNA signature to predict the clinical responsiveness of HNSCC radiotherapy.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Carcinoma de Células Escamosas/genética , Neoplasias de Cabeza y Cuello/genética , MicroARNs/análisis , Tolerancia a Radiación/genética , Transcriptoma/genética , Carcinoma de Células Escamosas/radioterapia , Línea Celular Tumoral , Bases de Datos Genéticas , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Carcinoma de Células Escamosas de Cabeza y Cuello
19.
Cancer Biol Ther ; 16(9): 1316-22, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26177331

RESUMEN

Kinesin-like protein KIFC1, a normally nonessential kinesin motor, plays a critical role in centrosome clustering in cancer cells and is essential for the survival of cancer cells. Herein, we reported that KIFC1 expression is up-regulated in breast cancer, particularly in estrogen receptor negative, progesterone receptor negative and triple negative breast cancer, and is not associated with epidermal growth factor receptor 2 status. In addition, KIFC1 is highly expressed in all 8 tested human breast cancer cell lines, but is absent in normal human mammary epithelial cells and weakly expressed in 2 human lung fibroblast lines. Moreover, KIFC1 silencing significantly reduced breast cancer cell viability. Finally, we found that PJ34, a potent small molecule inhibitor of poly(ADP-ribose) polymerase, suppressed KIFC1 expression and induced multipolar spindle formation in breast cancer cells, and inhibited cell viability and colony formation within the same concentration range, suggesting that KIFC1 suppression by PJ34 contributes to its anti-breast cancer activity. Together, these results suggest that KIFC1 is a novel promising therapeutic target for breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Cinesinas/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Cinesinas/genética , Terapia Molecular Dirigida , Fenantrenos/farmacología
20.
J Cancer ; 6(7): 671-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26078798

RESUMEN

There is an unmet clinical need to identify biomarkers for breast cancer neoadjuvant chemotherapy. Here, using miRNA TaqMan Low-Density Arrays (TLDA), we analyzed the miRNA expression profile in pre-treatment needle aspiration tumor samples from patients who received taxane-anthracycline-based neoadjuvant chemotherapy. Although, in an unsupervised hierarchical cluster analysis, the total miRNA expression profile could not generate a tree with clear distinction between pathologic complete response (pCR) and non-pCR classes, we found that elevated expression of miR-125b and miR-141 was associated with non-pCR. In vitro experiments indicated that inhibition of miR-125b and miR-141 expression reduced cellular survival in response to taxane-anthracycline treatment. Furthermore, co-transfection with miR-125b and miR-141 mimics increased resistance of MCF7 and BT549 cells to taxane-anthracycline induced cytotoxicity. Pathway analyses indicated that many of the target proteins of miR-125b are involved in apoptotic pathways and cell cycle control. Together, we provide evidence that elevated miR-125b and 141 expression predicts a poor clinical responsiveness of taxane-anthracycline-based neoadjuvant chemotherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA