Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Ther ; 28(12): 2577-2592, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-32755564

RESUMEN

T cells engineered to express chimeric antigen receptors (CARs) targeting CD19 have produced impressive outcomes for the treatment of B cell malignancies, but different products vary in kinetics, persistence, and toxicity profiles based on the co-stimulatory domains included in the CAR. In this study, we performed transcriptional profiling of bulk CAR T cell populations and single cells to characterize the transcriptional states of human T cells transduced with CD3ζ, 4-1BB-CD3ζ (BBζ), or CD28-CD3ζ (28ζ) co-stimulatory domains at rest and after activation by triggering their CAR or their endogenous T cell receptor (TCR). We identified a transcriptional signature common across CARs with the CD3ζ signaling domain, as well as a distinct program associated with the 4-1BB co-stimulatory domain at rest and after activation. CAR T cells bearing BBζ had increased expression of human leukocyte antigen (HLA) class II genes, ENPP2, and interleukin (IL)-21 axis genes, and decreased PD1 compared to 28ζ CAR T cells. Similar to previous studies, we also found BBζ CAR CD8 T cells to be enriched in a central memory cell phenotype and fatty acid metabolism genes. Our data uncovered transcriptional signatures related to costimulatory domains and demonstrated that signaling domains included in CARs uniquely shape the transcriptional programs of T cells.


Asunto(s)
Ligando 4-1BB/química , Ligando 4-1BB/metabolismo , Ingeniería Celular/métodos , Dominios Proteicos/genética , ARN Citoplasmático Pequeño/genética , Receptores Quiméricos de Antígenos/genética , Transducción de Señal/genética , Linfocitos T/metabolismo , Transcriptoma , Células HEK293 , Humanos , Células K562 , RNA-Seq/métodos , Análisis de la Célula Individual , Transducción Genética
2.
Cell Death Dis ; 14(4): 267, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055388

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy is an FDA-approved treatment for several hematologic malignancies, yet not all patients respond to this treatment. While some resistance mechanisms have been identified, cell death pathways in target cancer cells remain underexplored. Impairing mitochondrial apoptosis via knockout of Bak and Bax, forced Bcl-2 and Bcl-XL expression, or caspase inhibition protected several tumor models from CAR T killing. However, impairing mitochondrial apoptosis in two liquid tumor cell lines did not protect target cells from CAR T killing. We found that whether a cell was Type I or Type II in response to death ligands explained the divergence of these results, so that mitochondrial apoptosis was dispensable for CART killing of cells that were Type I but not Type II. This suggests that the apoptotic signaling induced by CAR T cells bears important similarities to that induced by drugs. Combinations of drug and CAR T therapies will therefore require tailoring to the specific cell death pathways activated by CAR T cells in different types of cancer cells.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Apoptosis , Caspasas/metabolismo , Línea Celular Tumoral , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Neoplasias/terapia
3.
J Immunother Cancer ; 8(2)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32900862

RESUMEN

BACKGROUND: Adoptive cell therapy with chimeric antigen receptor T cells (CAR-T) has become a standard treatment for patients with certain aggressive B cell malignancies and holds promise to improve the care of patients suffering from numerous other cancers in the future. However, the high manufacturing cost of CAR-T cell therapies poses a major barrier to their broader clinical application. Among the key cost drivers of CAR-T production are single-use reagents for T cell activation and clinical-grade viral vector. The presence of variable amounts of contaminating monocytes in the starting material poses an additional challenge to CAR-T manufacturing, since they can impede T cell stimulation and transduction, resulting in manufacturing failure. METHODS: We created K562-based artificial antigen-presenting cells (aAPC) with genetically encoded T cell stimulation and costimulation that represent an inexhaustible source for T cell activation. We additionally disrupted endogenous expression of the low-density lipoprotein receptor (LDLR) on these aAPC (aAPC-ΔLDLR) using CRISPR-Cas9 gene editing nucleases to prevent inadvertent lentiviral transduction and avoid the sink effect on viral vector during transduction. Using various T cell sources, we produced CD19-directed CAR-T cells via aAPC-ΔLDLR-based activation and tested their in vitro and in vivo antitumor potency against B cell malignancies. RESULTS: We found that lack of LDLR expression on our aAPC-ΔLDLR conferred resistance to lentiviral transduction during CAR-T production. Using aAPC-ΔLDLR, we achieved efficient expansion of CAR-T cells even from unpurified starting material like peripheral blood mononuclear cells or unmanipulated leukapheresis product, containing substantial proportions of monocytes. CD19-directed CAR-T cells that we produced via aAPC-ΔLDLR-based expansion demonstrated potent antitumor responses in preclinical models of acute lymphoblastic leukemia and B-cell lymphoma. CONCLUSIONS: Our aAPC-ΔLDLR represent an attractive approach for manufacturing of lentivirally transduced T cells that may be simpler and more cost efficient than currently available methods.


Asunto(s)
Células Presentadoras de Antígenos/metabolismo , Inmunoterapia Adoptiva/métodos , Lentivirus/genética , Transducción Genética/métodos , Humanos
4.
JCI Insight ; 52019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30869654

RESUMEN

Regulatory T cells (Tregs) are key modulators of inflammation and are important for the maintenance of peripheral tolerance. Adoptive immunotherapy with polyclonal Tregs holds promise in organ transplantation, graft-versus-host disease, and autoimmune diseases, but may be enhanced by antigen-specific, long-lived Treg cells. We modified primary human Tregs with chimeric antigen-receptors (CARs) bearing different costimulatory domains and performed in vitro analyses of their phenotype and function. While neither the presence of a CAR nor the type of costimulation domain influenced Foxp3 expression in Tregs, the costimulation domain of the CARs affected CAR Treg surface phenotype and functions such as cytokine production. Furthermore, signaling from the CD28 costimulation domain maintained CAR Treg suppressor function, whereas 4-1B costimulation did not. In vivo, CAR Tregs accumulated at sites expressing target antigen, and suppressed antigen specific effector T cell responses; however, only CAR Tregs with CD28 signaling domains were potent inhibitors of effector T cell mediated graft rejection in vivo. Our findings support the use of CD28 based CAR-Tregs for tissue specific immune suppression in the clinic.


Asunto(s)
Receptores Quiméricos de Antígenos/química , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Animales , Enfermedades Autoinmunes , Autoinmunidad , Antígenos CD28 , Línea Celular , Femenino , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Enfermedad Injerto contra Huésped , Granzimas , Xenoinjertos , Humanos , Terapia de Inmunosupresión , Masculino , Ratones , Ratones Endogámicos NOD , Trasplante de Órganos , Fenotipo , Piel/patología
5.
Nat Biotechnol ; 37(9): 1049-1058, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31332324

RESUMEN

Chimeric antigen receptor (CAR)-T-cell therapy for solid tumors is limited due to heterogeneous target antigen expression and outgrowth of tumors lacking the antigen targeted by CAR-T cells directed against single antigens. Here, we developed a bicistronic construct to drive expression of a CAR specific for EGFRvIII, a glioblastoma-specific tumor antigen, and a bispecific T-cell engager (BiTE) against EGFR, an antigen frequently overexpressed in glioblastoma but also expressed in normal tissues. CART.BiTE cells secreted EGFR-specific BiTEs that redirect CAR-T cells and recruit untransduced bystander T cells against wild-type EGFR. EGFRvIII-specific CAR-T cells were unable to completely treat tumors with heterogenous EGFRvIII expression, leading to outgrowth of EGFRvIII-negative, EGFR-positive glioblastoma. However, CART.BiTE cells eliminated heterogenous tumors in mouse models of glioblastoma. BiTE-EGFR was locally effective but was not detected systemically after intracranial delivery of CART.BiTE cells. Unlike EGFR-specific CAR-T cells, CART.BiTE cells did not result in toxicity against human skin grafts in vivo.


Asunto(s)
Anticuerpos Biespecíficos/uso terapéutico , Antígenos de Neoplasias/inmunología , Glioblastoma/terapia , Receptores Quiméricos de Antígenos , Animales , Antígenos de Neoplasias/metabolismo , Diferenciación Celular , Receptores ErbB , Glioblastoma/inmunología , Glioblastoma/metabolismo , Humanos , Ratones , Neoplasias Experimentales , Linfocitos T/fisiología
6.
Blood Adv ; 3(21): 3248-3260, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31698455

RESUMEN

Chimeric antigen receptor (CAR) T cells (CARTs) have shown tremendous potential for the treatment of certain B-cell malignancies, including patients with relapsed/refractory multiple myeloma (MM). Targeting the B-cell maturation antigen (BCMA) has produced the most promising results for CART therapy of MM to date, but not all remissions are sustained. Emergence of BCMA escape variants has been reported under the selective pressure of monospecific anti-BCMA CART treatment. Thus, there is a clinical need for continuous improvement of CART therapies for MM. Here, we show that a novel trimeric APRIL (a proliferation-inducing ligand)-based CAR efficiently targets both BCMA+ and BCMA- MM. Modeled after the natural ligand-receptor pair, APRIL-based CARs allow for bispecific targeting of the MM-associated antigens BCMA and transmembrane activator and CAML interactor (TACI). However, natural ligands as CAR antigen-binding domains may require further engineering to promote optimal binding and multimerization to adequately trigger T-cell activation. We found that using a trimeric rather than a monomeric APRIL format as the antigen-binding domain enhanced binding to BCMA and TACI and CART activity against MM in vitro and in vivo. Dual-specific, trimeric APRIL-based CAR are a promising therapeutic approach for MM with potential for preventing and treating BCMA escape.


Asunto(s)
Antígenos de Neoplasias , Inmunoterapia Adoptiva , Mieloma Múltiple/inmunología , Mieloma Múltiple/terapia , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/antagonistas & inhibidores , Animales , Antígenos de Neoplasias/inmunología , Citocinas/metabolismo , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Activación de Linfocitos/inmunología , Ratones , Unión Proteica/inmunología , Receptores Quiméricos de Antígenos/genética , Especificidad del Receptor de Antígeno de Linfocitos T , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Science ; 359(6380): 1161-1166, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29420262

RESUMEN

Polymorphisms in C1orf106 are associated with increased risk of inflammatory bowel disease (IBD). However, the function of C1orf106 and the consequences of disease-associated polymorphisms are unknown. Here we demonstrate that C1orf106 regulates adherens junction stability by regulating the degradation of cytohesin-1, a guanine nucleotide exchange factor that controls activation of ARF6. By limiting cytohesin-1-dependent ARF6 activation, C1orf106 stabilizes adherens junctions. Consistent with this model, C1orf106-/- mice exhibit defects in the intestinal epithelial cell barrier, a phenotype observed in IBD patients that confers increased susceptibility to intestinal pathogens. Furthermore, the IBD risk variant increases C1orf106 ubiquitination and turnover with consequent functional impairments. These findings delineate a mechanism by which a genetic polymorphism fine-tunes intestinal epithelial barrier integrity and elucidate a fundamental mechanism of cellular junctional control.


Asunto(s)
Uniones Adherentes/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Enfermedades Inflamatorias del Intestino/genética , Fosfoproteínas/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/metabolismo , Animales , Células CACO-2 , Células HEK293 , Humanos , Inmunoprecipitación , Mucosa Intestinal/patología , Ratones , Ratones Mutantes , Fosfoproteínas/genética , Polimorfismo Genético , Proteolisis , Riesgo , Ubiquitinación/genética
8.
Cell Rep ; 17(11): 2955-2965, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27974209

RESUMEN

Significant insights into disease pathogenesis have been gleaned from population-level genetic studies; however, many loci associated with complex genetic disease contain numerous genes, and phenotypic associations cannot be assigned unequivocally. In particular, a gene-dense locus on chromosome 11 (61.5-61.65 Mb) has been associated with inflammatory bowel disease, rheumatoid arthritis, and coronary artery disease. Here, we identify TMEM258 within this locus as a central regulator of intestinal inflammation. Strikingly, Tmem258 haploinsufficient mice exhibit severe intestinal inflammation in a model of colitis. At the mechanistic level, we demonstrate that TMEM258 is a required component of the oligosaccharyltransferase complex and is essential for N-linked protein glycosylation. Consequently, homozygous deficiency of Tmem258 in colonic organoids results in unresolved endoplasmic reticulum (ER) stress culminating in apoptosis. Collectively, our results demonstrate that TMEM258 is a central mediator of ER quality control and intestinal homeostasis.


Asunto(s)
Hexosiltransferasas/genética , Enfermedades Inflamatorias del Intestino/genética , Proteínas de la Membrana/genética , Animales , Apoptosis , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Estrés del Retículo Endoplásmico/genética , Glicosilación , Hexosiltransferasas/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Intestinos/patología , Proteínas de la Membrana/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA