Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Dev Biol ; 387(2): 154-66, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24462977

RESUMEN

Growth factors and morphogens regulate embryonic patterning, cell fate specification, cell migration, and morphogenesis. The activity and behavior of these signaling molecules are regulated in the extracellular space through interactions with proteoglycans (Bernfield et al., 1999; Perrimon and Bernfield 2000; Lander and Selleck 2000; Selleck 2000). Proteoglycans are high molecular-weight proteins consisting of a core protein with covalently linked glycosaminoglycan (GAG) side chains, which are thought to mediate ligand interaction. Drosophila mutant embryos deficient for UDP-glucose dehydrogenase activity (Ugdh, required for GAG synthesis) exhibit abnormal Fgf, Wnt and TGFß signaling and die during gastrulation, indicating a broad and critical role for proteoglycans during early embryonic development (Lin et al., 1999; Lin and Perrimon 2000) (Hacker et al., 1997). Mouse Ugdh mutants also die at gastrulation, however, only Fgf signaling appears disrupted (Garcia-Garcia and Anderson, 2003). These findings suggested a possible divergence in the requirement for proteoglycans during Drosophila and mouse embryogenesis, and that mammals may have evolved alternative means of regulating Wnt and TGFß activity. To further examine the function of proteoglycans in vertebrate development, we have characterized zebrafish mutants devoid of both maternal and zygotic Ugdh/Jekyll activity (MZjekyll). We demonstrate that MZjekyll mutant embryos display abnormal Fgf, Shh, and Wnt signaling activities, with concomitant defects in central nervous system patterning, cardiac ventricular fate specification and axial morphogenesis. Furthermore, we uncover a novel role for proteoglycans in left-right pattern formation. Our findings resolve longstanding questions into the evolutionary conservation of Ugdh function and provide new mechanistic insights into the initiation of left-right asymmetry.


Asunto(s)
Tipificación del Cuerpo/genética , Desarrollo Embrionario/genética , Proteoglicanos de Heparán Sulfato/metabolismo , Síndrome de Heterotaxia/genética , Proteoglicanos/metabolismo , Uridina Difosfato Glucosa Deshidrogenasa/genética , Cigoto , Animales , Drosophila/embriología , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , Glicosaminoglicanos/metabolismo , Proteínas Hedgehog/metabolismo , Proteoglicanos de Heparán Sulfato/genética , Ratones , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo
2.
Hum Mol Genet ; 20(10): 2058-70, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21389084

RESUMEN

Budding uninhibited by benzimidazole-related 1 (BUBR1) is a central molecule of the spindle assembly checkpoint. Germline mutations in the budding uninhibited by benzimidazoles 1 homolog beta gene encoding BUBR1 cause premature chromatid separation (mosaic variegated aneuploidy) [PCS (MVA)] syndrome, which is characterized by constitutional aneuploidy and a high risk of childhood cancer. Patients with the syndrome often develop Dandy-Walker complex and polycystic kidneys; implying a critical role of BUBR1 in morphogenesis. However, little is known about the function of BUBR1 other than mitotic control. Here, we report that BUBR1 is essential for the primary cilium formation, and that the PCS (MVA) syndrome is thus a novel ciliopathy. Morpholino knockdown of bubr1 in medaka fish also caused ciliary dysfunction characterized by defects in cerebellar development and perturbed left-right asymmetry of the embryo. Biochemical analyses demonstrated that BUBR1 is required for ubiquitin-mediated proteasomal degradation of cell division cycle protein 20 in the G0 phase and maintains anaphase-promoting complex/cyclosome-CDC20 homolog 1 activity that regulates the optimal level of dishevelled for ciliogenesis.


Asunto(s)
Cilios/metabolismo , Cilios/patología , Estructuras Citoplasmáticas/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Proteínas Cdc20 , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Cerebelo/metabolismo , Cerebelo/patología , Trastornos de los Cromosomas/genética , Trastornos de los Cromosomas/fisiopatología , Estructuras Citoplasmáticas/metabolismo , Proteínas Dishevelled , Perros , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Modelos Biológicos , Mosaicismo , Oryzias , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Estabilidad Proteica , Transducción de Señal , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Vertebrados/genética , Vertebrados/metabolismo , Proteínas Wnt/metabolismo
3.
Biochem J ; 428(3): 385-95, 2010 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-20377527

RESUMEN

Acidic phosphoproteins of mineralized tissues such as bone and dentin are believed to play important roles in HA (hydroxyapatite) nucleation and growth. BSP (bone sialoprotein) is the most potent known nucleator of HA, an activity that is thought to be dependent on phosphorylation of the protein. The present study identifies the role phosphate groups play in mineral formation. Recombinant BSP and peptides corresponding to residues 1-100 and 133-205 of the rat sequence were phosphorylated with CK2 (protein kinase CK2). Phosphorylation increased the nucleating activity of BSP and BSP-(133-205), but not BSP-(1-100). MS analysis revealed that the major site phosphorylated within BSP-(133-205) was Ser136, a site adjacent to the series of contiguous glutamate residues previously implicated in HA nucleation. The critical role of phosphorylated Ser136 in HA nucleation was confirmed by site-directed mutagenesis and functional analyses. Furthermore, peptides corresponding to the 133-148 sequence of rat BSP were synthesized with or without a phosphate group on Ser136. As expected, the phosphopeptide was a more potent nucleator. The mechanism of nucleation was investigated using molecular-dynamics simulations analysing BSP-(133-148) interacting with the {100} crystal face of HA. Both phosphorylated and non-phosphorylated sequences adsorbed to HA in extended conformations with alternating residues in contact with and facing away from the crystal face. However, this alternating-residue pattern was more pronounced when Ser136 was phosphorylated. These studies demonstrate a critical role for Ser136 phosphorylation in BSP-mediated HA nucleation and identify a unique mode of interaction between the nucleating site of the protein and the {100} face of HA.


Asunto(s)
Durapatita/química , Serina/metabolismo , Sialoglicoproteínas/metabolismo , Animales , Sitios de Unión , Durapatita/metabolismo , Sialoproteína de Unión a Integrina , Mutagénesis Sitio-Dirigida , Fosforilación , Ratas , Serina/genética , Sialoglicoproteínas/química
4.
Cell Rep ; 5(1): 37-43, 2013 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-24095732

RESUMEN

The role for cilia in establishing planar cell polarity (PCP) is contentious. Although knockdown of genes known to function in ciliogenesis has been reported to cause PCP-related morphogenesis defects in zebrafish, genetic mutations affecting intraflagellar transport (IFT) do not show PCP phenotypes despite the requirement for IFT in cilia formation. This discrepancy has been attributed to off-target effects of antisense morpholino oligonucleotide (MO) injection, confounding maternal effects in zygotic mutant embryos, or an inability to distinguish between cilia-dependent versus cilia-independent protein functions. To determine the role of cilia in PCP, we generated maternal + zygotic IFT88 (MZift88) mutant zebrafish embryos, which never form cilia. We clearly demonstrate that cilia are not required to establish PCP. Rather, IFT88 plays a cilia-independent role in controlling oriented cell divisions at gastrulation and neurulation. Our results have important implications for the interpretation of cilia gene function in normal development and in disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Cilios/fisiología , Desarrollo Embrionario/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , División Celular/fisiología , Polaridad Celular/fisiología , Femenino , Masculino
5.
Nat Cell Biol ; 12(4): 407-12, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20305649

RESUMEN

Cilia are microtubule-based organelles that project into the extracellular space, function in the perception and integration of environmental cues, and regulate Hedgehog signal transduction. The emergent association of ciliary defects with diverse and pleiotropic human disorders has fuelled investigations into the molecular genetic regulation of ciliogenesis. Although recent studies implicate planar cell polarity (PCP) in cilia formation, this conclusion is based on analyses of proteins that are not specific to, or downstream effectors of PCP signal transduction. Here we characterize zebrafish embryos devoid of all Vangl2 function, a core and specific component of the PCP signalling pathway. Using Arl13b-GFP as a live marker of the ciliary axoneme, we demonstrate that Vangl2 is not required for ciliogenesis. Instead, Vangl2 controls the posterior tilting of primary motile cilia lining the neurocoel, Kupffer's vesicle and pronephric duct. Furthermore, we show that Vangl2 is required for asymmetric localization of cilia to the posterior apical membrane of neuroepithelial cells. Our results indicate a broad and essential role for PCP in the asymmetric localization and orientation of motile primary cilia, establishing directional fluid flow implicated in normal embryonic development and disease.


Asunto(s)
Polaridad Celular , Proteínas de la Membrana/metabolismo , Células Neuroepiteliales/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Factores de Ribosilacion-ADP/metabolismo , Animales , Animales Modificados Genéticamente , Cilios/metabolismo , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Proteoglicanos de Heparán Sulfato/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Movimiento (Física) , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA