Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Plant Microbe Interact ; 37(3): 347-353, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38114082

RESUMEN

Xanthomonads, including Xanthomonas and Xylella species, constitute a large and significant group of economically and ecologically important plant pathogens. Up-to-date knowledge of these pathogens and their hosts is essential for the development of suitable control measures. Traditional review articles or book chapters have inherent limitations, including static content and rapid obsolescence. To address these challenges, we have developed a Web-based knowledge platform dedicated to xanthomonads, inspired by the concept of living systematic reviews. This platform offers a dynamic resource that encompasses bacterial virulence factors, plant resistance genes, and tools for diagnostics and genetic diversity studies. Our goal is to facilitate access for newcomers to the field, provide continuing education opportunities for students, assist plant protection services with diagnostics, provide valuable information to breeders on sources of resistance and breeding targets, and offer comprehensive expert knowledge to other stakeholders interested in plant-pathogenic xanthomonads. This resource is available for queries and updates at https://euroxanth.ipn.pt. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Fitomejoramiento , Xanthomonas , Humanos , Virulencia/genética , Xanthomonas/genética , Factores de Virulencia/genética , Plantas/microbiología , Enfermedades de las Plantas/microbiología
2.
EMBO Rep ; 23(1): e53981, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34752000

RESUMEN

Gram-negative bacteria use type VI secretion systems (T6SSs) to deliver toxic effector proteins into neighboring cells. Cargo effectors are secreted by binding noncovalently to the T6SS apparatus. Occasionally, effector secretion is assisted by an adaptor protein, although the adaptor itself is not secreted. Here, we report a new T6SS secretion mechanism, in which an effector and a co-effector are secreted together. Specifically, we identify a novel periplasm-targeting effector that is secreted together with its co-effector, which contains a MIX (marker for type sIX effector) domain previously reported only in polymorphic toxins. The effector and co-effector directly interact, and they are dependent on each other for secretion. We term this new secretion mechanism "a binary effector module," and we show that it is widely distributed in marine bacteria.


Asunto(s)
Sistemas de Secreción Tipo VI , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo
3.
J Bacteriol ; 203(21): e0028121, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34398661

RESUMEN

Competition is a critical aspect of bacterial life, as it enables niche establishment and facilitates the acquisition of essential nutrients. Warfare between Gram-negative bacteria is largely mediated by the type VI secretion system (T6SS), a dynamic nanoweapon that delivers toxic effector proteins from an attacking cell to adjacent bacteria in a contact-dependent manner. Effector-encoding bacteria prevent self-intoxication and kin cell killing by the expression of immunity proteins, which neutralize effector toxicity by specifically binding their cognate effector and either occluding its active site or preventing the structural rearrangements necessary for effector activation. In this study, we investigate Tsi3, a previously uncharacterized T6SS immunity protein present in multiple strains of the human pathogen Acinetobacter baumannii. We show that Tsi3 is the cognate immunity protein of an antibacterial effector of unknown function, Tse3. Our bioinformatic analyses indicate that Tsi3 homologs are widespread among Gram-negative bacteria, often encoded within T6SS effector-immunity modules. Surprisingly, we found that Tsi3 homologs are predicted to possess a characteristic formylglycine-generating enzyme (FGE) domain, which is present in various enzymatic proteins. Our data show that Tsi3-mediated immunity is dependent on Tse3-Tsi3 protein-protein interactions and that Tsi3 homologs from various bacteria do not provide immunity against nonkin Tse3. Thus, we conclude that Tsi3 homologs are unlikely to be functional enzymes. Collectively, our work identifies FGE domain-containing proteins as important mediators of immunity against T6SS attacks and indicates that the FGE domain can be coopted as a scaffold in multiple proteins to carry out diverse functions. IMPORTANCE Despite the wealth of knowledge on the diversity of biochemical activities carried out by T6SS effectors, comparably little is known about the various strategies that bacteria employ to prevent susceptibility to T6SS-dependent bacterial killing. Our work establishes a novel family of T6SS immunity proteins with a characteristic FGE domain. This domain is present in enzymatic proteins with various catalytic activities. Our characterization of Tsi3 expands the known functions carried out by FGE-like proteins to include defense during T6SS-mediated bacterial warfare. Moreover, it highlights the evolution of FGE domain-containing proteins to carry out diverse biological functions.


Asunto(s)
Acinetobacter baumannii/metabolismo , Proteínas Bacterianas/metabolismo , Glicina/análogos & derivados , Sistemas de Secreción Tipo VI/metabolismo , Acinetobacter baumannii/inmunología , Proteínas Bacterianas/genética , Western Blotting/clasificación , Western Blotting/métodos , Glicina/metabolismo , Modelos Moleculares , Conformación Proteica , Sistemas de Secreción Tipo VI/inmunología
4.
PLoS Pathog ; 14(1): e1006880, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29377937

RESUMEN

The Gram-negative bacterium Xanthomonas euvesicatoria (Xe) is the causal agent of bacterial spot disease of pepper and tomato. Xe delivers effector proteins into host cells through the type III secretion system to promote disease. Here, we show that the Xe effector XopAU, which is conserved in numerous Xanthomonas species, is a catalytically active protein kinase and contributes to the development of disease symptoms in pepper plants. Agrobacterium-mediated expression of XopAU in host and non-host plants activated typical defense responses, including MAP kinase phosphorylation, accumulation of pathogenesis-related (PR) proteins and elicitation of cell death, that were dependent on the kinase activity of the effector. XopAU-mediated cell death was not dependent on early signaling components of effector-triggered immunity and was also observed when the effector was delivered into pepper leaves by Xanthomonas campestris pv. campestris, but not by Xe. Protein-protein interaction studies in yeast and in planta revealed that XopAU physically interacts with components of plant immunity-associated MAP kinase cascades. Remarkably, XopAU directly phosphorylated MKK2 in vitro and enhanced its phosphorylation at multiple sites in planta. Consistent with the notion that MKK2 is a target of XopAU, silencing of the MKK2 homolog or overexpression of the catalytically inactive mutant MKK2K99R in N. benthamiana plants reduced XopAU-mediated cell death and MAPK phosphorylation. Furthermore, yeast co-expressing XopAU and MKK2 displayed reduced growth and this phenotype was dependent on the kinase activity of both proteins. Together, our results support the conclusion that XopAU contributes to Xe disease symptoms in pepper plants and manipulates host MAPK signaling through phosphorylation and activation of MKK2.


Asunto(s)
Interacciones Huésped-Patógeno , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas Quinasas/fisiología , Xanthomonas , Agrobacterium tumefaciens , Regulación de la Expresión Génica de las Plantas , Sistema de Señalización de MAP Quinasas/genética , Organismos Modificados Genéticamente , Proteínas de Plantas/metabolismo , Xanthomonas/enzimología , Xanthomonas/metabolismo
5.
Mar Drugs ; 16(11)2018 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-30400344

RESUMEN

Vibrionaceae is a widespread family of aquatic bacteria that includes emerging pathogens and symbionts. Many Vibrionaceae harbor a type VI secretion system (T6SS), which is a secretion apparatus used to deliver toxins, termed effectors, into neighboring cells. T6SSs mediate both antibacterial and anti-eukaryotic activities. Notably, antibacterial effectors are encoded together with a gene that encodes a cognate immunity protein so as to antagonize the toxicity of the effector. The MIX (Marker for type sIX effectors) domain has been previously defined as a marker of T6SS effectors carrying polymorphic C-terminal toxins. Here, we set out to identify the Vibrionaceae MIX-effector repertoire and to analyze the various toxin domains they carry. We used a computational approach to search for the MIX-effectors in the Vibrionaceae genomes, and grouped them into clusters based on the C-terminal toxin domains. We classified MIX-effectors as either antibacterial or anti-eukaryotic, based on the presence or absence of adjacent putative immunity genes, respectively. Antibacterial MIX-effectors carrying pore-forming, phospholipase, nuclease, peptidoglycan hydrolase, and protease activities were found. Furthermore, we uncovered novel virulence MIX-effectors. These are encoded by "professional MIXologist" strains that employ a cocktail of antibacterial and anti-eukaryotic MIX-effectors. Our findings suggest that certain Vibrionaceae adapted their antibacterial T6SS to mediate interactions with eukaryotic hosts or predators.


Asunto(s)
Antibacterianos/toxicidad , Organismos Acuáticos/metabolismo , Proteínas Bacterianas/toxicidad , Eucariontes/fisiología , Sistemas de Secreción Tipo VI/toxicidad , Vibrionaceae/metabolismo , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biología Computacional , Interacciones Microbiota-Huesped/fisiología , Dominios Proteicos/genética , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Vibrionaceae/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Factores de Virulencia/toxicidad
6.
Mol Ecol ; 26(21): 5939-5952, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28869687

RESUMEN

Deciphering the evolutionary history and transmission patterns of virulence determinants is necessary to understand the emergence of novel pathogens. The main virulence determinant of most pathogenic proteobacteria is the type three secretion system (T3SS). The Xanthomonas genus includes bacteria responsible for numerous epidemics in agroecosystems worldwide and represents a major threat to plant health. The main virulence factor of Xanthomonas is the Hrp2 family T3SS; however, this system is not conserved in all strains and it has not been previously determined whether the distribution of T3SS in this bacterial genus has resulted from losses or independent acquisitions. Based on comparative genomics of 82 genome sequences representing the diversity of the genus, we have inferred three ancestral acquisitions of the Hrp2 cluster during Xanthomonas evolution followed by subsequent losses in some commensal strains and re-acquisition in some species. While mutation was the main force driving polymorphism at the gene level, interspecies homologous recombination of large fragments expanding through several genes shaped Hrp2 cluster polymorphism. Horizontal gene transfer of the entire Hrp2 cluster also occurred. A reduced core effectome composed of xopF1, xopM, avrBs2 and xopR was identified that may allow commensal strains overcoming plant basal immunity. In contrast, stepwise accumulation of numerous type 3 effector genes was shown in successful pathogens responsible for epidemics. Our data suggest that capacity to intimately interact with plants through T3SS would be an ancestral trait of xanthomonads. Since its acquisition, T3SS has experienced a highly dynamic evolutionary history characterized by intense gene flux between species that may reflect its role in host adaptation.


Asunto(s)
Evolución Molecular , Flujo Génico , Sistemas de Secreción Tipo III/genética , Xanthomonas/genética , Transferencia de Gen Horizontal , Genes Bacterianos , Recombinación Homóloga , Filogenia , Factores de Virulencia/genética
7.
Cell Rep ; 43(4): 114015, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38568810

RESUMEN

The type VI secretion system (T6SS), a widespread protein delivery apparatus, plays a role in bacterial competition by delivering toxic effectors into neighboring cells. Identifying new T6SS effectors and deciphering the mechanism that governs their secretion remain major challenges. Here, we report two orphan antibacterial T6SS effectors in the pathogen Pantoea agglomerans (Pa). These effectors share an N-terminal domain, Pantoea type six (PIX), that defines a widespread class of polymorphic T6SS effectors in Enterobacterales. We show that the PIX domain is necessary and sufficient for T6SS-mediated effector secretion and that PIX binds to a specialized Pa VgrG protein outside its C-terminal toxic domain. Our findings underline the importance of identifying and characterizing delivery domains in polymorphic toxin classes as a tool to reveal effectors and shed light on effector delivery mechanisms.


Asunto(s)
Proteínas Bacterianas , Pantoea , Sistemas de Secreción Tipo VI , Proteínas Bacterianas/metabolismo , Pantoea/metabolismo , Unión Proteica , Dominios Proteicos , Sistemas de Secreción Tipo VI/metabolismo
8.
Gut Microbes ; 15(1): 2178795, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36803660

RESUMEN

All strains of the marine bacterium Vibrio parahaemolyticus harbor a type VI secretion system (T6SS) named T6SS2, suggesting that this system plays an important role in the life cycle of this emerging pathogen. Although T6SS2 was recently shown to play a role in interbacterial competition, its effector repertoire remains unknown. Here, we employed proteomics to investigate the T6SS2 secretome of two V. parahaemolyticus strains, and we identified several antibacterial effectors encoded outside of the main T6SS2 gene cluster. We revealed two T6SS2-secreted proteins that are conserved in this species, indicating that they belong to the core secretome of T6SS2; other identified effectors are found only in subsets of strains, suggesting that they comprise an accessory effector arsenal of T6SS2. Remarkably, a conserved Rhs repeat-containing effector serves as a quality control checkpoint and is required for T6SS2 activity. Our results reveal effector repertoires of a conserved T6SS, including effectors that have no known activity and that have not been previously associated with T6SSs.


Asunto(s)
Microbioma Gastrointestinal , Sistemas de Secreción Tipo VI , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antibacterianos
9.
Nat Commun ; 14(1): 4983, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591831

RESUMEN

Bacteria use the type VI secretion system (T6SS) to deliver toxic effectors into bacterial or eukaryotic cells during interbacterial competition, host colonization, or when resisting predation. Identifying effectors is a challenging task, as they lack canonical secretion signals or universally conserved domains. Here, we identify a protein domain, RIX, that defines a class of polymorphic T6SS cargo effectors. RIX is widespread in the Vibrionaceae family and is located at N-termini of proteins containing diverse antibacterial and anti-eukaryotic toxic domains. We demonstrate that RIX-containing proteins are delivered via T6SS into neighboring cells and that RIX is necessary and sufficient for T6SS-mediated secretion. In addition, RIX-containing proteins can enable the T6SS-mediated delivery of other cargo effectors by a previously undescribed mechanism. The identification of RIX-containing proteins significantly enlarges the repertoire of known T6SS effectors, especially those with anti-eukaryotic activities. Furthermore, our findings also suggest that T6SSs may play an underappreciated role in the interactions between vibrios and eukaryotes.


Asunto(s)
Antibacterianos , Células Eucariotas , Animales , Transporte Biológico , Eucariontes/genética , Conducta Predatoria
10.
Microbiology (Reading) ; 158(Pt 11): 2859-2869, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22977090

RESUMEN

The Gram-negative bacterium Pseudomonas syringae pv. tomato (Pst) is the causal agent of speck disease in tomato. Pst pathogenicity depends on a type III secretion system that delivers effector proteins into host cells, where they promote disease by manipulating processes to the advantage of the pathogen. Previous studies identified seven Pst effectors that inhibit growth when expressed in yeast under normal growth conditions, suggesting that they interfere with cellular processes conserved in yeast and plants. We hypothesized that effectors also target conserved cellular processes that are required for yeast growth only under stress conditions. We therefore examined phenotypes induced by expression of Pst effectors in yeast grown in the presence of various stressors. Out of 29 effectors tested, five (HopX1, HopG1, HopT1-1, HopH1 and AvrPtoB) displayed growth inhibition phenotypes only in combination with stress conditions. Viability assays revealed that the HopX1 effector caused loss of cell viability under prolonged osmotic stress. Using transcription reporters, we found that HopX1 attenuated the activation of the high osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway, which is responsible for yeast survival under osmotic stress, while other MAPK pathways were mildly affected by HopX1. Interestingly, HopX1-mediated phenotypes in yeast were dependent on the putative transglutaminase catalytic triad of the effector. This study enlarges the pool of phenotypes available for the functional analysis of Pst type III effectors in yeast, and exemplifies how analysis of phenotypes detected in yeast under stress conditions can lead to the identification of eukaryotic cellular processes affected by bacterial effectors.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Pseudomonas syringae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimología , Expresión Génica , Glicerol/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Concentración Osmolar , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
mSystems ; 7(6): e0072322, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36226968

RESUMEN

Type VI secretion systems (T6SSs) play a major role in interbacterial competition and in bacterial interactions with eukaryotic cells. The distribution of T6SSs and the effectors they secrete vary between strains of the same bacterial species. Therefore, a pan-genome investigation is required to better understand the T6SS potential of a bacterial species of interest. Here, we performed a comprehensive, systematic analysis of T6SS gene clusters and auxiliary modules found in the pan-genome of Vibrio parahaemolyticus, an emerging pathogen widespread in marine environments. We identified 4 different T6SS gene clusters within genomes of this species; two systems appear to be ancient and widespread, whereas the other 2 systems are rare and appear to have been more recently acquired via horizontal gene transfer. In addition, we identified diverse T6SS auxiliary modules containing putative effectors with either known or predicted toxin domains. Many auxiliary modules are possibly horizontally shared between V. parahaemolyticus genomes, since they are flanked by DNA mobility genes. We further investigated a DUF4225-containing protein encoded on an Hcp auxiliary module, and we showed that it is an antibacterial T6SS effector that exerts its toxicity in the bacterial periplasm, leading to cell lysis. Computational analyses of DUF4225 revealed a widespread toxin domain associated with various toxin delivery systems. Taken together, our findings reveal a diverse repertoire of T6SSs and auxiliary modules in the V. parahaemolyticus pan-genome, as well as novel T6SS effectors and toxin domains that can play a major role in the interactions of this species with other cells. IMPORTANCE Gram-negative bacteria employ toxin delivery systems to mediate their interactions with neighboring cells. Vibrio parahaemolyticus, an emerging pathogen of humans and marine animals, was shown to deploy antibacterial toxins into competing bacteria via the type VI secretion system (T6SS). Here, we analyzed 1,727 V. parahaemolyticus genomes and revealed the pan-genome T6SS repertoire of this species, including the T6SS gene clusters, horizontally shared auxiliary modules, and toxins. We also identified a role for a previously uncharacterized domain, DUF4225, as a widespread antibacterial toxin associated with diverse toxin delivery systems.


Asunto(s)
Sistemas de Secreción Tipo VI , Vibrio parahaemolyticus , Animales , Humanos , Sistemas de Secreción Tipo VI/genética , Vibrio parahaemolyticus/genética , Proteínas Bacterianas/genética , Bacterias/metabolismo , Antibacterianos/metabolismo
12.
Microbiol Spectr ; 10(5): e0246522, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36098406

RESUMEN

Gram-negative bacteria often employ the type VI secretion system (T6SS) to deliver diverse cocktails of antibacterial effectors into rival bacteria. In many cases, even when the identity of the delivered effectors is known, their toxic activity and mechanism of secretion are not. Here, we investigate VPA1263, a Vibrio parahaemolyticus T6SS effector that belongs to a widespread class of polymorphic effectors containing a MIX domain. We reveal a C-terminal DNase toxin domain belonging to the HNH nuclease superfamily, and we show that it mediates the antibacterial toxicity of this effector during bacterial competition. Furthermore, we demonstrate that the VPA1263 MIX domain is necessary for T6SS-mediated secretion and intoxication of recipient bacteria. These results are the first indication of a functional role for MIX domains in T6SS secretion. IMPORTANCE Specialized protein delivery systems are used during bacterial competition to deploy cocktails of toxins that target conserved cellular components. Although numerous toxins have been revealed, the activity of many remains unknown. In this study, we investigated such a toxin from the pathogen Vibrio parahaemolyticus. Our findings indicate that the toxin employs a DNase domain to intoxicate competitors. We also show that a domain used as a marker for secreted toxins is required for secretion of the toxin via a type VI secretion system.


Asunto(s)
Sistemas de Secreción Tipo VI , Vibrio parahaemolyticus , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Desoxirribonucleasas/genética , Desoxirribonucleasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vibrio parahaemolyticus/genética , Bacterias/metabolismo , Antibacterianos
13.
Microorganisms ; 9(4)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923763

RESUMEN

Bacteria in the genus Xanthomonas infect a wide range of crops and wild plants, with most species responsible for plant diseases that have a global economic and environmental impact on the seed, plant, and food trade. Infections by Xanthomonas spp. cause a wide variety of non-specific symptoms, making their identification difficult. The coexistence of phylogenetically close strains, but drastically different in their phenotype, poses an added challenge to diagnosis. Data on future climate change scenarios predict an increase in the severity of epidemics and a geographical expansion of pathogens, increasing pressure on plant health services. In this context, the effectiveness of integrated disease management strategies strongly depends on the availability of rapid, sensitive, and specific diagnostic methods. The accumulation of genomic information in recent years has facilitated the identification of new DNA markers, a cornerstone for the development of more sensitive and specific methods. Nevertheless, the challenges that the taxonomic complexity of this genus represents in terms of diagnosis together with the fact that within the same bacterial species, groups of strains may interact with distinct host species demonstrate that there is still a long way to go. In this review, we describe and discuss the current molecular-based methods for the diagnosis and detection of regulated Xanthomonas, taxonomic and diversity studies in Xanthomonas and genomic approaches for molecular diagnosis.

14.
Life Sci Alliance ; 3(4)2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32169897

RESUMEN

Bacteroidetes are Gram-negative bacteria that are abundant in the environment as well as in the gut microbiota of animals. Many bacteroidetes encode large proteins containing an N-terminal domain of unknown function, named TANFOR. In this work, we show that TANFOR-containing proteins carry polymorphic C-terminal toxin domains with predicted antibacterial and anti-eukaryotic activities. We also show that a C-terminal domain that is prevalent in TANFOR-containing proteins represents a novel family of antibacterial DNase toxins, which we named BaCT (Bacteroidetes C-terminal Toxin). Finally, we discover that TANFOR-encoding gene neighborhoods are enriched with genes that encode substrates of the type IX secretion system (T9SS), which is involved in exporting proteins from the periplasm across the outer membrane. Based on these findings, we conclude that TANFOR-containing proteins are a new class of polymorphic toxins, and we hypothesize that they are T9SS substrates.


Asunto(s)
Sistemas de Secreción Bacterianos/genética , Bacteroidetes/genética , Toxinas Biológicas/metabolismo , Secuencia de Aminoácidos/genética , Antibacterianos/metabolismo , Antibacterianos/toxicidad , Proteínas Bacterianas/química , Sistemas de Secreción Bacterianos/metabolismo , Bacteroidetes/metabolismo , Bacteroidetes/fisiología , Microbioma Gastrointestinal/genética , Dominios Proteicos/fisiología , Transporte de Proteínas/fisiología , Alineación de Secuencia/métodos , Toxinas Biológicas/toxicidad
15.
Nat Commun ; 11(1): 1085, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32109231

RESUMEN

Gram-negative bacteria deliver effectors via the type VI secretion system (T6SS) to outcompete their rivals. Each bacterial strain carries a different arsenal of effectors; the identities of many remain unknown. Here, we present an approach to identify T6SS effectors encoded in bacterial genomes of interest, without prior knowledge of the effectors' domain content or genetic neighborhood. Our pipeline comprises a comparative genomics analysis followed by screening using a surrogate T6SS+ strain. Using this approach, we identify an antibacterial effector belonging to the T6SS1 of Vibrio parahaemolyticus, representing a widespread family of T6SS effectors sharing a C-terminal domain that we name Tme (Type VI membrane-disrupting effector). Tme effectors function in the periplasm where they intoxicate bacteria by disrupting membrane integrity. We believe our approach can be scaled up to identify additional T6SS effectors in various bacterial genera.


Asunto(s)
Membrana Externa Bacteriana/metabolismo , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Sistemas de Secreción Tipo VI/genética , Vibrio parahaemolyticus/genética , Antibacterianos/farmacología , Membrana Externa Bacteriana/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Descubrimiento de Drogas , Genoma Bacteriano , Genómica , Periplasma/metabolismo , Vibrio parahaemolyticus/citología , Vibrio parahaemolyticus/metabolismo
16.
Biophys J ; 96(12): 4887-95, 2009 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-19527647

RESUMEN

Calcium/calmodulin (Ca/CaM) binds to the intracellular juxtamembrane domain (JMD) of the epidermal growth factor receptor (EGFR). The basic JMD also binds to acidic lipids in the inner leaflet of the plasma membrane, and this interaction may contribute an extra level of autoinhibition to the receptor. Binding of a ligand to the EGFR produces a rapid increase in intracellular calcium, [Ca2+]i, and thus Ca/CaM. How does Ca/CaM compete with the plasma membrane for the JMD? Does Ca/CaM directly pull the JMD off the membrane or does Ca/CaM only bind to the JMD after it has dissociated spontaneously from the bilayer? To answer this question, we studied the effect of Ca/CaM on the rate of dissociation of fluorescent JMD peptides from phospholipid vesicles by making kinetic stop-flow measurements. Ca/CaM increases the rate of dissociation: an analysis of the differential equations that describe the dissociation shows that Ca/CaM must directly pull the basic JMD peptide off the membrane surface. These measurements lead to a detailed atomic-level mechanism for EGFR activation that reconciles the existence of preformed EGFR dimers/oligomers with the Kuriyan allosteric model for activation of the EGFR kinase domains.


Asunto(s)
Calmodulina/metabolismo , Membrana Celular/metabolismo , Receptores ErbB/metabolismo , Animales , Calmodulina/química , Bovinos , Membrana Celular/química , Difusión , Receptores ErbB/química , Cinética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/metabolismo , Unión Proteica
17.
Nat Commun ; 10(1): 3595, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31399579

RESUMEN

Bacteria deliver toxic effectors via type VI secretion systems (T6SSs) to dominate competitors, but the identity and function of many effectors remain unknown. Here we identify a Vibrio antibacterial T6SS effector that contains a previously undescribed, widespread DNase toxin domain that we call PoNe (Polymorphic Nuclease effector). PoNe belongs to a diverse superfamily of PD-(D/E)xK phosphodiesterases, and is associated with several toxin delivery systems including type V, type VI, and type VII. PoNe toxicity is antagonized by cognate immunity proteins (PoNi) containing DUF1911 and DUF1910 domains. In addition to PoNe, the effector contains a domain of unknown function (FIX domain) that is also found N-terminal to known toxin domains and is genetically and functionally linked to T6SS. FIX sequences can be used to identify T6SS effector candidates with potentially novel toxin domains. Our findings underline the modular nature of bacterial effectors harboring delivery or marker domains, specific to a secretion system, fused to interchangeable toxins.


Asunto(s)
Antibacterianos/farmacología , Desoxirribonucleasas/metabolismo , Dominios Proteicos , Sistemas de Secreción Tipo VI/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biomarcadores , Desoxirribonucleasas/farmacología , Eliminación de Gen , Respuesta SOS en Genética , Sistemas de Secreción Tipo VI/efectos de los fármacos , Sistemas de Secreción Tipo VI/genética , Vibrio parahaemolyticus/efectos de los fármacos , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo
18.
Biochemistry ; 47(41): 10970-80, 2008 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-18803404

RESUMEN

The calnexin/calreticulin cycle is a quality control system responsible for promoting the folding of newly synthesized glycoproteins entering the endoplasmic reticulum (ER). The association of calnexin and calreticulin with the glycoproteins is regulated by ER glucosidase II, which hydrolyzes Glc 2Man X GlcNAc 2 glycans to Glc 1Man X GlcNAc 2 and further to Glc 0Man X GlcNAc 2 ( X represents any number between 5 and 9). To gain new insights into the reaction mechanism of glucosidase II, we developed a kinetic model that describes the interactions between glucosidase II, calnexin/calreticulin, and the glycans. Our model accurately reconstructed the hydrolysis of glycans with nine mannose residues and glycans with seven mannose residues, as measured by Totani et al. [Totani, K., Ihara, Y., Matsuo, I., and Ito, Y. (2006) J. Biol. Chem. 281, 31502-31508]. Intriguingly, our model predicted that glucosidase II was inhibited by its nonglucosylated end products, where the inhibitory effect of Glc 0Man 7GlcNAc 2 was much stronger than that of Glc 0Man 9GlcNAc 2. These predictions were confirmed experimentally. Moreover, our model suggested that glycans with a different number of mannose residues can be equivalent substrates of glucosidase II, in contrast to what had been previously thought. We discuss the possibility that nonglucosylated glycans, existing in the ER, might regulate the entry of newly synthesized glycoproteins into the calnexin/calreticulin cycle. Our model also shows that glucosidase II does not interact with monoglucosylated glycans while they are bound to calnexin or calreticulin.


Asunto(s)
Retículo Endoplásmico/enzimología , Inhibidores de Glicósido Hidrolasas , Algoritmos , Cromatografía Líquida de Alta Presión , Glicosilación , Hidrólisis , Cinética , alfa-Glucosidasas
19.
Biochim Biophys Acta ; 1763(4): 345-55, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16630666

RESUMEN

We have recently created a kinetic model that reproduces the dynamics of exocytosis with high accuracy. The reconstruction necessitated a search, in a multi-dimensional parameter space, for 37 parameters that described the system, with no assurance that the parameters, which reconstructed the observations, are a unique set. In the present study, a Genetic Algorithm (GA) was used for a thorough search in the unknown parameter space, using a strategy of gradual increase of the complexity of the analyzed input data. Upon systematic incorporation of one to four measurable parameters, used as input signals for the analysis, the constraint set on the GA search imposed the convergence of the free parameters into a single narrow range. The mean values for each adjustable parameter represent a minimum for the fitness function in the multi-dimensional parameter space. The GA search demonstrates that the parameters that control the kinetics of exocytosis are the rate constants of the steps downstream to synaptotagmin binding, and that the equilibrium constant of the binding of calcium to Munc13 controls the calcium-dependent priming process. Thus, the systematic use of the GA creates a link between specific reactions in the process of exocytosis and experimental phenotypes.


Asunto(s)
Algoritmos , Células Cromafines/fisiología , Exocitosis/fisiología , Modelos Genéticos , Animales , Células Cromafines/metabolismo , Simulación por Computador , Exocitosis/genética , Humanos , Cinética , Ratones , Ratones Noqueados , Transducción de Señal/genética , Sinaptotagminas/deficiencia , Sinaptotagminas/genética , Sinaptotagminas/metabolismo
20.
PLoS One ; 6(11): e27698, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22110728

RESUMEN

Bacterial effector proteins, which are delivered into the host cell via the type III secretion system, play a key role in the pathogenicity of gram-negative bacteria by modulating various host cellular processes to the benefit of the pathogen. To identify cellular processes targeted by bacterial effectors, we developed a simple strategy that uses an array of yeast deletion strains fitted into a single 96-well plate. The array is unique in that it was optimized computationally such that despite the small number of deletion strains, it covers the majority of genes in the yeast synthetic lethal interaction network. The deletion strains in the array are screened for hypersensitivity to the expression of a bacterial effector of interest. The hypersensitive deletion strains are then analyzed for their synthetic lethal interactions to identify potential targets of the bacterial effector. We describe the identification, using this approach, of a cellular process targeted by the Xanthomonas campestris type III effector XopE2. Interestingly, we discover that XopE2 affects the yeast cell wall and the endoplasmic reticulum stress response. More generally, the use of a single 96-well plate makes the screening process accessible to any laboratory and facilitates the analysis of a large number of bacterial effectors in a short period of time. It therefore provides a promising platform for studying the functions and cellular targets of bacterial effectors and other virulence proteins.


Asunto(s)
Proteínas Bacterianas/farmacología , Análisis por Micromatrices/métodos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Factores de Virulencia/farmacología , Cafeína/farmacología , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Genes Letales/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Dodecil Sulfato de Sodio/farmacología , Xanthomonas campestris/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA