Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 616(7958): 755-763, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046083

RESUMEN

Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, but this effect was not seen in clones with driver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimental knockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.


Asunto(s)
Hematopoyesis Clonal , Células Madre Hematopoyéticas , Animales , Humanos , Ratones , Alelos , Hematopoyesis Clonal/genética , Estudio de Asociación del Genoma Completo , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Mutación , Regiones Promotoras Genéticas
2.
Nature ; 612(7941): 720-724, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477530

RESUMEN

Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury1-4. These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries5. Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction.


Asunto(s)
Consumo de Bebidas Alcohólicas , Predisposición Genética a la Enfermedad , Variación Genética , Internacionalidad , Herencia Multifactorial , Uso de Tabaco , Humanos , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Herencia Multifactorial/genética , Factores de Riesgo , Uso de Tabaco/genética , Consumo de Bebidas Alcohólicas/genética , Transcriptoma , Tamaño de la Muestra , Sitios Genéticos/genética , Europa (Continente)/etnología
3.
Nature ; 590(7845): 290-299, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33568819

RESUMEN

The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)1. In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.


Asunto(s)
Variación Genética/genética , Genoma Humano/genética , Genómica , National Heart, Lung, and Blood Institute (U.S.) , Medicina de Precisión , Citocromo P-450 CYP2D6/genética , Haplotipos/genética , Heterocigoto , Humanos , Mutación INDEL , Mutación con Pérdida de Función , Mutagénesis , Fenotipo , Polimorfismo de Nucleótido Simple , Densidad de Población , Medicina de Precisión/normas , Control de Calidad , Tamaño de la Muestra , Estados Unidos , Secuenciación Completa del Genoma/normas
4.
Am J Hum Genet ; 110(10): 1704-1717, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37802043

RESUMEN

Long non-coding RNAs (lncRNAs) are known to perform important regulatory functions in lipid metabolism. Large-scale whole-genome sequencing (WGS) studies and new statistical methods for variant set tests now provide an opportunity to assess more associations between rare variants in lncRNA genes and complex traits across the genome. In this study, we used high-coverage WGS from 66,329 participants of diverse ancestries with measurement of blood lipids and lipoproteins (LDL-C, HDL-C, TC, and TG) in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) program to investigate the role of lncRNAs in lipid variability. We aggregated rare variants for 165,375 lncRNA genes based on their genomic locations and conducted rare-variant aggregate association tests using the STAAR (variant-set test for association using annotation information) framework. We performed STAAR conditional analysis adjusting for common variants in known lipid GWAS loci and rare-coding variants in nearby protein-coding genes. Our analyses revealed 83 rare lncRNA variant sets significantly associated with blood lipid levels, all of which were located in known lipid GWAS loci (in a ±500-kb window of a Global Lipids Genetics Consortium index variant). Notably, 61 out of 83 signals (73%) were conditionally independent of common regulatory variation and rare protein-coding variation at the same loci. We replicated 34 out of 61 (56%) conditionally independent associations using the independent UK Biobank WGS data. Our results expand the genetic architecture of blood lipids to rare variants in lncRNAs.


Asunto(s)
ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Estudio de Asociación del Genoma Completo , Medicina de Precisión , Secuenciación Completa del Genoma/métodos , Lípidos/genética , Polimorfismo de Nucleótido Simple/genética
5.
Nature ; 582(7811): 240-245, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32499647

RESUMEN

Meta-analyses of genome-wide association studies (GWAS) have identified more than 240 loci that are associated with type 2 diabetes (T2D)1,2; however, most of these loci have been identified in analyses of individuals with European ancestry. Here, to examine T2D risk in East Asian individuals, we carried out a meta-analysis of GWAS data from 77,418 individuals with T2D and 356,122 healthy control individuals. In the main analysis, we identified 301 distinct association signals at 183 loci, and across T2D association models with and without consideration of body mass index and sex, we identified 61 loci that are newly implicated in predisposition to T2D. Common variants associated with T2D in both East Asian and European populations exhibited strongly correlated effect sizes. Previously undescribed associations include signals in or near GDAP1, PTF1A, SIX3, ALDH2, a microRNA cluster, and genes that affect the differentiation of muscle and adipose cells3. At another locus, expression quantitative trait loci at two overlapping T2D signals affect two genes-NKX6-3 and ANK1-in different tissues4-6. Association studies in diverse populations identify additional loci and elucidate disease-associated genes, biology, and pathways.


Asunto(s)
Pueblo Asiatico/genética , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Aldehído Deshidrogenasa Mitocondrial/genética , Alelos , Ancirinas/genética , Índice de Masa Corporal , Estudios de Casos y Controles , Europa (Continente)/etnología , Proteínas del Ojo/genética , Asia Oriental/etnología , Femenino , Estudio de Asociación del Genoma Completo , Proteínas de Homeodominio/genética , Humanos , Masculino , Proteínas del Tejido Nervioso/genética , ARN Mensajero/análisis , Factores de Transcripción/genética , Transcripción Genética , Proteína Homeobox SIX3
6.
Am J Hum Genet ; 109(1): 81-96, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34932938

RESUMEN

Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We performed gene-based association testing of blood lipid levels with rare (minor allele frequency < 1%) predicted damaging coding variation by using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels; some of these genes have not been previously associated with lipid levels when using rare coding variation from population-based samples. We prioritize 32 genes in array-based genome-wide association study (GWAS) loci based on aggregations of rare coding variants; three (EVI5, SH2B3, and PLIN1) had no prior association of rare coding variants with lipid levels. Most of our associated genes showed evidence of association among multiple ancestries. Finally, we observed an enrichment of gene-based associations for low-density lipoprotein cholesterol drug target genes and for genes closest to GWAS index single-nucleotide polymorphisms (SNPs). Our results demonstrate that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based GWAS index SNP is often the functional gene for blood lipid levels.


Asunto(s)
Exoma , Variación Genética , Estudio de Asociación del Genoma Completo , Lípidos/sangre , Sistemas de Lectura Abierta , Alelos , Glucemia/genética , Estudios de Casos y Controles , Biología Computacional/métodos , Bases de Datos Genéticas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Predisposición Genética a la Enfermedad , Genética de Población , Estudio de Asociación del Genoma Completo/métodos , Humanos , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Hígado/patología , Anotación de Secuencia Molecular , Herencia Multifactorial , Fenotipo , Polimorfismo de Nucleótido Simple
7.
Nat Methods ; 19(12): 1599-1611, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36303018

RESUMEN

Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 TOPMed samples. We also analyze five non-lipid TOPMed traits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genoma , Humanos , Estudio de Asociación del Genoma Completo/métodos , Secuenciación Completa del Genoma/métodos , Fenotipo , Variación Genética
8.
Am J Hum Genet ; 108(4): 564-582, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33713608

RESUMEN

Although many loci have been associated with height in European ancestry populations, very few have been identified in African ancestry individuals. Furthermore, many of the known loci have yet to be generalized to and fine-mapped within a large-scale African ancestry sample. We performed sex-combined and sex-stratified meta-analyses in up to 52,764 individuals with height and genome-wide genotyping data from the African Ancestry Anthropometry Genetics Consortium (AAAGC). We additionally combined our African ancestry meta-analysis results with published European genome-wide association study (GWAS) data. In the African ancestry analyses, we identified three novel loci (SLC4A3, NCOA2, ECD/FAM149B1) in sex-combined results and two loci (CRB1, KLF6) in women only. In the African plus European sex-combined GWAS, we identified an additional three novel loci (RCCD1, G6PC3, CEP95) which were equally driven by AAAGC and European results. Among 39 genome-wide significant signals at known loci, conditioning index SNPs from European studies identified 20 secondary signals. Two of the 20 new secondary signals and none of the 8 novel loci had minor allele frequencies (MAF) < 5%. Of 802 known European height signals, 643 displayed directionally consistent associations with height, of which 205 were nominally significant (p < 0.05) in the African ancestry sex-combined sample. Furthermore, 148 of 241 loci contained ≤20 variants in the credible sets that jointly account for 99% of the posterior probability of driving the associations. In summary, trans-ethnic meta-analyses revealed novel signals and further improved fine-mapping of putative causal variants in loci shared between African and European ancestry populations.


Asunto(s)
Población Negra/genética , Estatura/genética , Estudio de Asociación del Genoma Completo , África/etnología , Negro o Afroamericano/genética , Europa (Continente)/etnología , Femenino , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética
9.
Hum Mol Genet ; 30(15): 1443-1456, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-33856023

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and is highly correlated with metabolic disease. NAFLD results from environmental exposures acting on a susceptible polygenic background. This study performed the largest multiethnic investigation of exonic variation associated with NAFLD and correlated metabolic traits and diseases. An exome array meta-analysis was carried out among eight multiethnic population-based cohorts (n = 16 492) with computed tomography (CT) measured hepatic steatosis. A fixed effects meta-analysis identified five exome-wide significant loci (P < 5.30 × 10-7); including a novel signal near TOMM40/APOE. Joint analysis of TOMM40/APOE variants revealed the TOMM40 signal was attributed to APOE rs429358-T; APOE rs7412 was not associated with liver attenuation. Moreover, rs429358-T was associated with higher serum alanine aminotransferase, liver steatosis, cirrhosis, triglycerides and obesity; as well as, lower cholesterol and decreased risk of myocardial infarction and Alzheimer's disease (AD) in phenome-wide association analyses in the Michigan Genomics Initiative, United Kingdom Biobank and/or public datasets. These results implicate APOE in imaging-based identification of NAFLD. This association may or may not translate to nonalcoholic steatohepatitis; however, these results indicate a significant association with advanced liver disease and hepatic cirrhosis. These findings highlight allelic heterogeneity at the APOE locus and demonstrate an inverse link between NAFLD and AD at the exome level in the largest analysis to date.


Asunto(s)
Apolipoproteínas E/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/genética , Alanina Transaminasa , Alelos , Enfermedad de Alzheimer/genética , Apolipoproteínas E/metabolismo , Bases de Datos Genéticas , Exoma/genética , Frecuencia de los Genes/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Hígado , Cirrosis Hepática/genética , Infarto del Miocardio/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Pronóstico , Factores de Riesgo , Triglicéridos
10.
Metabolomics ; 19(8): 72, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558891

RESUMEN

CONTEXT: Insulin resistance is associated with multiple complex diseases; however, precise measures of insulin resistance are invasive, expensive, and time-consuming. OBJECTIVE: Develop estimation models for measures of insulin resistance, including insulin sensitivity index (SI) and homeostatic model assessment of insulin resistance (HOMA-IR) from metabolomics data. DESIGN: Insulin Resistance Atherosclerosis Family Study (IRASFS). SETTING: Community based. PARTICIPANTS: Mexican Americans (MA) and African Americans (AA). MAIN OUTCOME: Estimation models for measures of insulin resistance, i.e. SI and HOMA-IR. RESULTS: Least Absolute Shrinkage and Selection Operator (LASSO) and Elastic Net regression were used to build insulin resistance estimation models from 1274 metabolites combined with clinical data, e.g. age, sex, body mass index (BMI). Metabolite data were transformed using three approaches, i.e. inverse normal transformation, standardization, and Box Cox transformation. The analysis was performed in one MA recruitment site (San Luis Valley, Colorado (SLV); N = 450) and tested in another MA recruitment site (San Antonio, Texas (SA); N = 473). In addition, the two MA recruitment sites were combined and estimation models tested in the AA recruitment sample (Los Angeles, California; N = 495). Estimated and empiric SI were correlated in the SA (r2 = 0.77) and AA (r2 = 0.74) testing datasets. Further, estimated and empiric SI were consistently associated with BMI, low-density lipoprotein cholesterol (LDL), and triglycerides. We applied similar approaches to estimate HOMA-IR with similar results. CONCLUSIONS: We have developed a method for estimating insulin resistance with metabolomics data that has the potential for application to a wide range of biomedical studies and conditions.


Asunto(s)
Aterosclerosis , Resistencia a la Insulina , Humanos , Metabolómica , Aterosclerosis/metabolismo
11.
Metabolomics ; 19(4): 35, 2023 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-37005925

RESUMEN

INTRODUCTION: African Americans are at increased risk for type 2 diabetes. OBJECTIVES: This work aimed to examine metabolomic signature of glucose homeostasis in African Americans. METHODS: We used an untargeted liquid chromatography-mass spectrometry metabolomic approach to comprehensively profile 727 plasma metabolites among 571 African Americans from the Insulin Resistance Atherosclerosis Family Study (IRAS-FS) and investigate the associations between these metabolites and both the dynamic (SI, insulin sensitivity; AIR, acute insulin response; DI, disposition index; and SG, glucose effectiveness) and basal (HOMA-IR and HOMA-B) measures of glucose homeostasis using univariate and regularized regression models. We also compared the results with our previous findings in the IRAS-FS Mexican Americans. RESULTS: We confirmed increased plasma metabolite levels of branched-chain amino acids and their metabolic derivatives, 2-aminoadipate, 2-hydroxybutyrate, glutamate, arginine and its metabolic derivatives, carbohydrate metabolites, and medium- and long-chain fatty acids were associated with insulin resistance, while increased plasma metabolite levels in the glycine, serine and threonine metabolic pathway were associated with insulin sensitivity. We also observed a differential ancestral effect of glutamate on glucose homeostasis with significantly stronger effects observed in African Americans than those previously observed in Mexican Americans. CONCLUSION: We extended the observations that metabolites are useful biomarkers in the identification of prediabetes in individuals at risk of type 2 diabetes in African Americans. We revealed, for the first time, differential ancestral effect of certain metabolites (i.e., glutamate) on glucose homeostasis traits. Our study highlights the need for additional comprehensive metabolomic studies in well-characterized multiethnic cohorts.


Asunto(s)
Aterosclerosis , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Aterosclerosis/metabolismo , Negro o Afroamericano , Diabetes Mellitus Tipo 2/metabolismo , Glucosa , Glutamatos , Homeostasis/fisiología , Metabolómica
12.
Am J Hum Genet ; 104(1): 112-138, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30595373

RESUMEN

Mitochondria (MT), the major site of cellular energy production, are under dual genetic control by 37 mitochondrial DNA (mtDNA) genes and numerous nuclear genes (MT-nDNA). In the CHARGEmtDNA+ Consortium, we studied genetic associations of mtDNA and MT-nDNA associations with body mass index (BMI), waist-hip-ratio (WHR), glucose, insulin, HOMA-B, HOMA-IR, and HbA1c. This 45-cohort collaboration comprised 70,775 (insulin) to 170,202 (BMI) pan-ancestry individuals. Validation and imputation of mtDNA variants was followed by single-variant and gene-based association testing. We report two significant common variants, one in MT-ATP6 associated (p ≤ 5E-04) with WHR and one in the D-loop with glucose. Five rare variants in MT-ATP6, MT-ND5, and MT-ND6 associated with BMI, WHR, or insulin. Gene-based meta-analysis identified MT-ND3 associated with BMI (p ≤ 1E-03). We considered 2,282 MT-nDNA candidate gene associations compiled from online summary results for our traits (20 unique studies with 31 dataset consortia's genome-wide associations [GWASs]). Of these, 109 genes associated (p ≤ 1E-06) with at least 1 of our 7 traits. We assessed regulatory features of variants in the 109 genes, cis- and trans-gene expression regulation, and performed enrichment and protein-protein interactions analyses. Of the identified mtDNA and MT-nDNA genes, 79 associated with adipose measures, 49 with glucose/insulin, 13 with risk for type 2 diabetes, and 18 with cardiovascular disease, indicating for pleiotropic effects with health implications. Additionally, 21 genes related to cholesterol, suggesting additional important roles for the genes identified. Our results suggest that mtDNA and MT-nDNA genes and variants reported make important contributions to glucose and insulin metabolism, adipocyte regulation, diabetes, and cardiovascular disease.


Asunto(s)
ADN Mitocondrial/genética , Genes Mitocondriales/genética , Variación Genética/genética , Metabolismo/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Adipocitos/metabolismo , Índice de Masa Corporal , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Estudios de Cohortes , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Hemoglobina Glucada/metabolismo , Humanos , Insulina/metabolismo , Sitios de Carácter Cuantitativo , Relación Cintura-Cadera
13.
PLoS Genet ; 15(12): e1008500, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31869403

RESUMEN

Most genome-wide association and fine-mapping studies to date have been conducted in individuals of European descent, and genetic studies of populations of Hispanic/Latino and African ancestry are limited. In addition, these populations have more complex linkage disequilibrium structure. In order to better define the genetic architecture of these understudied populations, we leveraged >100,000 phased sequences available from deep-coverage whole genome sequencing through the multi-ethnic NHLBI Trans-Omics for Precision Medicine (TOPMed) program to impute genotypes into admixed African and Hispanic/Latino samples with genome-wide genotyping array data. We demonstrated that using TOPMed sequencing data as the imputation reference panel improves genotype imputation quality in these populations, which subsequently enhanced gene-mapping power for complex traits. For rare variants with minor allele frequency (MAF) < 0.5%, we observed a 2.3- to 6.1-fold increase in the number of well-imputed variants, with 11-34% improvement in average imputation quality, compared to the state-of-the-art 1000 Genomes Project Phase 3 and Haplotype Reference Consortium reference panels. Impressively, even for extremely rare variants with minor allele count <10 (including singletons) in the imputation target samples, average information content rescued was >86%. Subsequent association analyses of TOPMed reference panel-imputed genotype data with hematological traits (hemoglobin (HGB), hematocrit (HCT), and white blood cell count (WBC)) in ~21,600 African-ancestry and ~21,700 Hispanic/Latino individuals identified associations with two rare variants in the HBB gene (rs33930165 with higher WBC [p = 8.8x10-15] in African populations, rs11549407 with lower HGB [p = 1.5x10-12] and HCT [p = 8.8x10-10] in Hispanics/Latinos). By comparison, neither variant would have been genome-wide significant if either 1000 Genomes Project Phase 3 or Haplotype Reference Consortium reference panels had been used for imputation. Our findings highlight the utility of the TOPMed imputation reference panel for identification of novel rare variant associations not previously detected in similarly sized genome-wide studies of under-represented African and Hispanic/Latino populations.


Asunto(s)
Negro o Afroamericano/genética , Hispánicos o Latinos/genética , Medicina de Precisión/métodos , Secuenciación Completa del Genoma/métodos , Globinas beta/genética , Adulto , Anciano , Anciano de 80 o más Años , Biología Computacional/métodos , Bases de Datos Genéticas , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genética de Población , Estudio de Asociación del Genoma Completo , Técnicas de Genotipaje , Humanos , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , Estados Unidos
14.
Hum Genomics ; 13(1): 21, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31092297

RESUMEN

BACKGROUND: End-stage kidney disease (ESKD) is a significant public health concern disproportionately affecting African Americans (AAs). Type 2 diabetes (T2D) is the leading cause of ESKD in the USA, and efforts to uncover genetic susceptibility to diabetic kidney disease (DKD) have had limited success. A prior genome-wide association study (GWAS) in AAs with T2D-ESKD was expanded with additional AA cases and controls and genotypes imputed to the higher density 1000 Genomes reference panel. The discovery analysis included 3432 T2D-ESKD cases and 6977 non-diabetic non-nephropathy controls (N = 10,409), followed by a discrimination analysis in 2756 T2D non-nephropathy controls to exclude T2D-associated variants. RESULTS: Six independent variants located in or near RND3/RBM43, SLITRK3, ENPP7, GNG7, and APOL1 achieved genome-wide significant association (P < 5 × 10-8) with T2D-ESKD. Following extension analyses in 1910 non-diabetic ESKD cases and 908 non-diabetic non-nephropathy controls, a meta-analysis of 5342 AA all-cause ESKD cases and 6977 AA non-diabetic non-nephropathy controls revealed an additional novel all-cause ESKD locus at EFNB2 (rs77113398; P = 9.84 × 10-9; OR = 1.94). Exclusion of APOL1 renal-risk genotype carriers identified two additional genome-wide significant T2D-ESKD-associated loci at GRAMD3 and MGAT4C. A second variant at GNG7 (rs373971520; P = 2.17 × 10-8, OR = 1.46) remained associated with all-cause ESKD in the APOL1-negative analysis. CONCLUSIONS: Findings provide further evidence for genetic factors associated with advanced kidney disease in AAs with T2D.

15.
Dig Dis Sci ; 65(8): 2321-2330, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31820181

RESUMEN

BACKGROUND: Although gastroparesis is seen in patients with type 2 diabetes mellitus (T2DM), the prevalence of symptoms suggestive of gastroparesis in patients with T2DM is unknown, particularly among African Americans. AIMS: To determine the prevalence of symptoms associated with gastroparesis in a large community-based population of European Americans and African Americans with T2DM. METHODS: Individuals with T2DM in the Diabetes Heart Study were asked to complete the gastroparesis cardinal symptom index (GCSI) and other GI-related questionnaires. GCSI total score ≥ 18 represented moderate or worse symptoms suggestive of gastroparesis. RESULTS: A total of 1253 participants (700 female, 553 male) completed the GCSI: 750 were European American and 503 African American. GCSI scores ≥ 18 were recorded in 72 participants: 38 (5%) of European Americans and 34 (7%) of African Americans. The average GCSI was 24.1 in European Americans and 24.6 in African Americans, indicating moderate to severe symptoms. Compared to European Americans with GCSI scores ≥ 18, African Americans were younger (59.4 vs. 53.3 years, p = 0.004), had earlier onset of T2DM (46.3 vs. 40.1 years, p = 0.01), higher HbA1c (7.6 vs. 9.1, p = 0.0009), underwent fewer upper endoscopies (55.3% vs. 26.5%, p = 0.02), and had more anxiety and depression (p < 0.001). CONCLUSIONS: Moderate or greater symptoms suggestive of gastroparesis are present in 5-7% of European and African American patients with T2DM in community-based populations. Symptoms suggestive of gastroparesis may be underappreciated in patients with T2DM and account for upper gastrointestinal symptoms, unexplained glycemic control issues, and decreased quality of life.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Gastroparesia/epidemiología , Negro o Afroamericano/estadística & datos numéricos , Anciano , Estudios de Cohortes , Femenino , Gastroparesia/etiología , Humanos , Masculino , Persona de Mediana Edad , North Carolina/epidemiología , Prevalencia , Índice de Severidad de la Enfermedad , Población Blanca/estadística & datos numéricos
16.
J Electrocardiol ; 58: 150-154, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31895990

RESUMEN

BACKGROUND: QRS-duration predicts mortality in patients with heart failure and, to a lesser extent, the general population. However, in patients with diabetes, its prognostic significance is unknown. To better understand how QRS-duration relates to mortality among those with diabetes, we explored survival as a function of QRS-duration in the Diabetes Heart Study. METHODS: The study population included 1335 participants. Cox proportional hazards modeling was used to evaluate the relationship between QRS-duration and all-cause mortality, comparing those with QRS-duration ≤120 vs. >120 (ms). Multivariable models adjusted for age, sex, race, hypertension, smoking, years with diabetes, BMI, systolic blood pressure, cholesterol, triglycerides, glomerular filtration rate, and hemoglobin A1c. RESULTS AND CONCLUSIONS: Participants were: mean age 61 ± 9, 55% women, 83% white; 99 participants (7.5%) had a QRS-duration >120. After 11,000 person-years of follow-up (median 8.5 years; maximum 13.9 years), 266 participants had died (20%). Participants with baseline QRS-duration >120 had an adjusted hazard ratio for all-cause mortality of 1.56 (95% CI 1.05-2.24; p = 0.027). Modeling QRS-duration as a continuous variable, we found an 11% increase in all-cause mortality for each 10 ms increase in QRS-duration. In conclusion, QRS-duration is associated with subsequent all-cause mortality among those with type 2 diabetes-participants with QRS-duration >120 ms had a 56% increase in all-cause mortality, even after adjustment for conventional risk factors. Given the ubiquitous presence of ECG data in the medical record, QRS-duration may prove to be a useful prognostic measure, especially among those with diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Anciano , Electrocardiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Modelos de Riesgos Proporcionales , Factores de Riesgo
17.
J Lipid Res ; 60(8): 1425-1431, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31133557

RESUMEN

apoM is a minor HDL apolipoprotein and carrier for sphingosine-1-phosphate (S1P). HDL apoM and S1P concentrations are inversely associated with atherosclerosis progression in rodents. We evaluated associations between plasma concentrations of S1P, plasma concentrations of apoM, and HDL apoM levels with prevalent subclinical atherosclerosis and mortality in the African American-Diabetes Heart Study participants (N = 545). Associations between plasma S1P, plasma apoM, and HDL apoM with subclinical atherosclerosis and mortality were assessed using multivariate parametric, nonparametric, and Cox proportional hazards models. At baseline, participants' median (25th percentile, 75th percentile) age was 55 (49, 62) years old and their coronary artery calcium (CAC) mass score was 26.5 (0.0, 346.5). Plasma S1P, plasma apoM, and HDL apoM were not associated with CAC. After 64 (57.6, 70.3) months of follow-up, 81 deaths were recorded. Higher concentrations of plasma S1P [odds ratio (OR) = 0.14, P = 0.01] and plasma apoM (OR = 0.10, P = 0.02), but not HDL apoM (P = 0.89), were associated with lower mortality after adjusting for age, sex, statin use, CAC, kidney function, and albuminuria. We conclude that plasma S1P and apoM concentrations are inversely and independently associated with mortality, but not CAC, in African Americans with type 2 diabetes after accounting for conventional risk factors.


Asunto(s)
Apolipoproteínas M/sangre , Negro o Afroamericano , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/mortalidad , Lisofosfolípidos/sangre , Esfingosina/análogos & derivados , Biomarcadores/sangre , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esfingosina/sangre , Tasa de Supervivencia
18.
Genet Epidemiol ; 42(6): 559-570, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29691896

RESUMEN

Although type 2 diabetes (T2D) results from metabolic defects in insulin secretion and insulin sensitivity, most of the genetic risk loci identified to date relates to insulin secretion. We reported that T2D loci influencing insulin sensitivity may be identified through interactions with insulin secretion loci, thereby leading to T2D. Here, we hypothesize that joint testing of variant main effects and interaction effects with an insulin secretion locus increases power to identify genetic interactions leading to T2D. We tested this hypothesis with an intronic MTNR1B SNP, rs10830963, which is associated with acute insulin response to glucose, a dynamic measure of insulin secretion. rs10830963 was tested for interaction and joint (main + interaction) effects with genome-wide data in African Americans (2,452 cases and 3,772 controls) from five cohorts. Genome-wide genotype data (Affymetrix Human Genome 6.0 array) was imputed to a 1000 Genomes Project reference panel. T2D risk was modeled using logistic regression with rs10830963 dosage, age, sex, and principal component as predictors. Joint effects were captured using the Kraft two degrees of freedom test. Genome-wide significant (P < 5 × 10-8 ) interaction with MTNR1B and joint effects were detected for CMIP intronic SNP rs17197883 (Pinteraction  = 1.43 × 10-8 ; Pjoint  = 4.70 × 10-8 ). CMIP variants have been nominally associated with T2D, fasting glucose, and adiponectin in individuals of East Asian ancestry, with high-density lipoprotein, and with waist-to-hip ratio adjusted for body mass index in Europeans. These data support the hypothesis that additional genetic factors contributing to T2D risk, including insulin sensitivity loci, can be identified through interactions with insulin secretion loci.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Negro o Afroamericano/genética , Epistasis Genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Insulina/metabolismo , Receptor de Melatonina MT2/genética , Adulto , Anciano , Índice de Masa Corporal , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/genética , Femenino , Humanos , Insulina/genética , Secreción de Insulina , Masculino , Persona de Mediana Edad , Modelos Genéticos , Polimorfismo de Nucleótido Simple/genética
19.
Am J Hum Genet ; 99(1): 56-75, 2016 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-27321945

RESUMEN

Knowledge of the genetic basis of the type 2 diabetes (T2D)-related quantitative traits fasting glucose (FG) and insulin (FI) in African ancestry (AA) individuals has been limited. In non-diabetic subjects of AA (n = 20,209) and European ancestry (EA; n = 57,292), we performed trans-ethnic (AA+EA) fine-mapping of 54 established EA FG or FI loci with detailed functional annotation, assessed their relevance in AA individuals, and sought previously undescribed loci through trans-ethnic (AA+EA) meta-analysis. We narrowed credible sets of variants driving association signals for 22/54 EA-associated loci; 18/22 credible sets overlapped with active islet-specific enhancers or transcription factor (TF) binding sites, and 21/22 contained at least one TF motif. Of the 54 EA-associated loci, 23 were shared between EA and AA. Replication with an additional 10,096 AA individuals identified two previously undescribed FI loci, chrX FAM133A (rs213676) and chr5 PELO (rs6450057). Trans-ethnic analyses with regulatory annotation illuminate the genetic architecture of glycemic traits and suggest gene regulation as a target to advance precision medicine for T2D. Our approach to utilize state-of-the-art functional annotation and implement trans-ethnic association analysis for discovery and fine-mapping offers a framework for further follow-up and characterization of GWAS signals of complex trait loci.


Asunto(s)
Glucemia/genética , Diabetes Mellitus Tipo 2/genética , Etnicidad/genética , Ayuno/metabolismo , Insulina/metabolismo , Grupos Raciales/genética , Pueblo Asiatico/genética , Población Negra/genética , Elementos de Facilitación Genéticos/genética , Femenino , Frecuencia de los Genes/genética , Estudio de Asociación del Genoma Completo , Humanos , Resistencia a la Insulina/genética , Intrones/genética , Islotes Pancreáticos/metabolismo , Masculino , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Factores de Transcripción/metabolismo , Población Blanca/genética
20.
Ophthalmology ; 126(1): 156-170, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29361356

RESUMEN

PURPOSE: To describe the study protocol and baseline characteristics of the African Descent and Glaucoma Evaluation Study (ADAGES) III. DESIGN: Cross-sectional, case-control study. PARTICIPANTS: Three thousand two hundred sixty-six glaucoma patients and control participants without glaucoma of African or European descent were recruited from 5 study centers in different regions of the United States. METHODS: Individuals of African descent (AD) and European descent (ED) with primary open-angle glaucoma (POAG) and control participants completed a detailed demographic and medical history interview. Standardized height, weight, and blood pressure measurements were obtained. Saliva and blood samples to provide serum, plasma, DNA, and RNA were collected for standardized processing. Visual fields, stereoscopic disc photographs, and details of the ophthalmic examination were obtained and transferred to the University of California, San Diego, Data Coordinating Center for standardized processing and quality review. MAIN OUTCOME MEASURES: Participant gender, age, race, body mass index, blood pressure, history of smoking and alcohol use in POAG patients and control participants were described. Ophthalmic measures included intraocular pressure, visual field mean deviation, central corneal thickness, glaucoma medication use, or past glaucoma surgery. Ocular conditions, including diabetic retinopathy, age-related macular degeneration, and past cataract surgery, were recorded. RESULTS: The 3266 ADAGES III study participants in this report include 2146 AD POAG patients, 695 ED POAG patients, 198 AD control participants, and 227 ED control participants. The AD POAG patients and control participants were significantly younger (both, 67.4 years) than ED POAG patients and control participants (73.4 and 70.2 years, respectively). After adjusting for age, AD POAG patients had different phenotypic characteristics compared with ED POAG patients, including higher intraocular pressure, worse visual acuity and visual field mean deviation, and thinner corneas (all P < 0.001). Family history of glaucoma did not differ between AD and ED POAG patients. CONCLUSIONS: With its large sample size, extensive specimen collection, and deep phenotyping of AD and ED glaucoma patients and control participants from different regions in the United States, the ADAGES III genomics study will address gaps in our knowledge of the genetics of POAG in this high-risk population.


Asunto(s)
Negro o Afroamericano/genética , Glaucoma de Ángulo Abierto/genética , Polimorfismo de Nucleótido Simple , Anciano , Constitución Corporal , Estudios de Casos y Controles , Estudios Transversales , Femenino , Interacción Gen-Ambiente , Estudio de Asociación del Genoma Completo , Genotipo , Glaucoma de Ángulo Abierto/diagnóstico , Humanos , Presión Intraocular/fisiología , Masculino , Persona de Mediana Edad , Fenotipo , Proyectos de Investigación , Agudeza Visual/fisiología , Campos Visuales/fisiología , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA