Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985995

RESUMEN

BACKGROUND AND AIMS: Inflammatory response is crucial for bile acid (BA)-induced cholestatic liver injury, but molecular mechanisms remain to be elucidated. Solute Carrier Family 35 Member C1 (SLC35C1) can transport GDP-fucose into the Golgi to facilitate protein glycosylation. Its mutation leads to the deficiency of leukocyte adhesion and enhances inflammation in humans. However, little is known about its role in liver diseases. APPROACH AND RESULTS: Hepatic SLC35C1 mRNA transcripts and protein expression were significantly increased in patients with obstructive cholestasis (OC) and mouse models of cholestasis. Immunofluorescence revealed that the upregulated SLC35C1 expression mainly occurred in hepatocytes. Liver-specific ablation of Slc35c1 (Slc35c1 cKO) significantly aggravated liver injury in mouse models of cholestasis induced by bile duct ligation and 1% cholic acid-feeding, evidenced by increased liver necrosis, inflammation, fibrosis, and bile ductular proliferation. The Slc35c1 cKO increased hepatic chemokine Ccl2 and Cxcl2 expression and T-cell, neutrophil and F4/80 macrophage infiltration, but did not affect the levels of serum and liver BA in mouse models of cholestasis. LC-MS/MS analysis revealed that hepatic Slc35c1 deficiency substantially reduced the fucosylation of cell-cell adhesion protein CEACAM1 at N153. Mechanistically, cholestatic levels of conjugated BAs stimulated SLC35C1 expression by activating the STAT3 signaling to facilitate CEACAM1 fucosylation at N153, and deficiency in the fucosylation of CEACAM1 at N135 enhanced the BA-stimulated CCL2 and CXCL2 mRNA expression in primary mouse hepatocytes and PLC/PRF/5-ASBT cells. CONCLUSIONS: Elevated hepatic SLC35C1 expression attenuates cholestatic liver injury by enhancing CEACAM1 fucosylation to suppress CCL2 and CXCL2 expression and liver inflammation.

2.
Hepatology ; 77(6): 1866-1881, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36647589

RESUMEN

BACKGROUND AND AIMS: Bile acids trigger a hepatic inflammatory response, causing cholestatic liver injury. Runt-related transcription factor-1 (RUNX1), primarily known as a master modulator in hematopoiesis, plays a pivotal role in mediating inflammatory responses. However, RUNX1 in hepatocytes is poorly characterized, and its role in cholestasis is unclear. Herein, we aimed to investigate the role of hepatic RUNX1 and its underlying mechanisms in cholestasis. APPROACH AND RESULTS: Hepatic expression of RUNX1 was examined in cholestatic patients and mouse models. Mice with liver-specific ablation of Runx1 were generated. Bile duct ligation and 1% cholic acid diet were used to induce cholestasis in mice. Primary mouse hepatocytes and the human hepatoma PLC/RPF/5- ASBT cell line were used for mechanistic studies. Hepatic RUNX1 mRNA and protein levels were markedly increased in cholestatic patients and mice. Liver-specific deletion of Runx1 aggravated inflammation and liver injury in cholestatic mice induced by bile duct ligation or 1% cholic acid feeding. Mechanistic studies indicated that elevated bile acids stimulated RUNX1 expression by activating the RUNX1 -P2 promoter through JAK/STAT3 signaling. Increased RUNX1 is directly bound to the promotor region of inflammatory chemokines, including CCL2 and CXCL2 , and transcriptionally repressed their expression in hepatocytes, leading to attenuation of liver inflammatory response. Blocking the JAK signaling or STAT3 phosphorylation completely abolished RUNX1 repression of bile acid-induced CCL2 and CXCL2 in hepatocytes. CONCLUSIONS: This study has gained initial evidence establishing the functional role of hepatocyte RUNX1 in alleviating liver inflammation during cholestasis through JAK/STAT3 signaling. Modulating hepatic RUNX1 activity could be a new therapeutic target for cholestasis.


Asunto(s)
Ácidos y Sales Biliares , Colestasis , Inflamación , Animales , Humanos , Ratones , Ácidos y Sales Biliares/efectos adversos , Ácidos y Sales Biliares/metabolismo , Colestasis/etiología , Colestasis/metabolismo , Ácidos Cólicos/efectos adversos , Ácidos Cólicos/farmacología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Inflamación/etiología , Inflamación/genética , Inflamación/metabolismo , Hígado/metabolismo , Factor de Transcripción STAT3/metabolismo
3.
Hepatology ; 73(6): 2099-2109, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33713486

RESUMEN

BACKGROUND AND AIMS: Data regarding outcome of COVID-19 in patients with autoimmune hepatitis (AIH) are lacking. APPROACH AND RESULTS: We performed a retrospective study on patients with AIH and COVID-19 from 34 centers in Europe and the Americas. We analyzed factors associated with severe COVID-19 outcomes, defined as the need for mechanical ventilation, intensive care admission, and/or death. The outcomes of patients with AIH were compared to a propensity score-matched cohort of patients without AIH but with chronic liver diseases (CLD) and COVID-19. The frequency and clinical significance of new-onset liver injury (alanine aminotransferase > 2 × the upper limit of normal) during COVID-19 was also evaluated. We included 110 patients with AIH (80% female) with a median age of 49 (range, 18-85) years at COVID-19 diagnosis. New-onset liver injury was observed in 37.1% (33/89) of the patients. Use of antivirals was associated with liver injury (P = 0.041; OR, 3.36; 95% CI, 1.05-10.78), while continued immunosuppression during COVID-19 was associated with a lower rate of liver injury (P = 0.009; OR, 0.26; 95% CI, 0.09-0.71). The rates of severe COVID-19 (15.5% versus 20.2%, P = 0.231) and all-cause mortality (10% versus 11.5%, P = 0.852) were not different between AIH and non-AIH CLD. Cirrhosis was an independent predictor of severe COVID-19 in patients with AIH (P < 0.001; OR, 17.46; 95% CI, 4.22-72.13). Continuation of immunosuppression or presence of liver injury during COVID-19 was not associated with severe COVID-19. CONCLUSIONS: This international, multicenter study reveals that patients with AIH were not at risk for worse outcomes with COVID-19 than other causes of CLD. Cirrhosis was the strongest predictor for severe COVID-19 in patients with AIH. Maintenance of immunosuppression during COVID-19 was not associated with increased risk for severe COVID-19 but did lower the risk for new-onset liver injury during COVID-19.


Asunto(s)
COVID-19 , Hepatitis Autoinmune , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Américas , COVID-19/complicaciones , COVID-19/epidemiología , Europa (Continente) , Femenino , Hepatitis Autoinmune/complicaciones , Hepatitis Autoinmune/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Puntaje de Propensión , Estudios Retrospectivos , Adulto Joven
4.
Semin Liver Dis ; 41(2): 206-212, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33957696

RESUMEN

Translational studies in human cholestatic diseases have for years been hindered by various challenges, including the rarity of the disorders, the difficulty in obtaining biliary tissue from across the spectrum of the disease stage, and the difficulty culturing and maintaining primary cholangiocytes. Organoid technology is increasingly being viewed as a technological breakthrough in translational medicine as it allows the culture and biobanking of self-organizing cells from various sources that facilitate the study of pathophysiology and therapeutics, including from individual patients in a personalized approach. This review describes current research using biliary organoids for the study of human cholestatic diseases and the emerging applications of organoids to regenerative medicine directed at the biliary tree. Challenges and possible solutions to the current hurdles in this emerging field, particularly the need for standardization of terminology and clarity on source materials and techniques, are also discussed.


Asunto(s)
Sistema Biliar , Colestasis , Bancos de Muestras Biológicas , Colestasis/terapia , Humanos , Organoides , Medicina Regenerativa
5.
J Hepatol ; 74(3): 550-559, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33039404

RESUMEN

BACKGROUND & AIMS: The nuclear factor of activated T-cells (NFAT) plays an important role in immune responses by regulating the expression of inflammatory genes. However, it is not known whether NFAT plays any role in the bile acid (BA)-induced hepatic inflammatory response. Thus, we aimed to examine the functional role of NFATc3 in cholestatic liver injury in mice and humans. METHODS: Gene and protein expression and cellular localization were assessed in primary hepatocyte cultures (mouse and human) and cholestatic liver tissues (murine models and patients with primary biliary cholangitis [PBC] or primary sclerosing cholangitis [PSC]) by quantitative PCR, western blot and immunohistochemistry. Specific NFAT inhibitors were used in vivo and in vitro. Gene reporter assays and ChIP-PCR were used to determine promoter activity. RESULTS: NFAT isoforms c1 and c3 were expressed in human and mouse hepatocytes. When treated with cholestatic levels of BAs, nuclear translocation of NFATc3 was increased in both human and mouse hepatocytes and was associated with elevated mRNA levels of IL-8, CXCL2, and CXCL10 in these cells. Blocking NFAT activation with pathway-specific inhibitors or knocking down Nfatc3 expression significantly decreased BA-driven induction of these cytokines in mouse hepatocytes. Nuclear expression of NFATc3/Nfatc3 protein was increased in cholestatic livers, both in mouse models (bile duct ligation or Abcb4-/- mice) and in patients with PBC and PSC in association with elevated tissue levels of Cxcl2 (mice) or IL-8 (humans). Gene reporter assays and ChIP-PCR demonstrated that the NFAT response element in the IL-8 promoter played a key role in BA-induced human IL-8 expression. Finally, blocking NFAT activation in vivo in Abcb4-/- mice reduced cholestatic liver injury. CONCLUSIONS: NFAT plays an important role in BA-stimulated hepatic cytokine expression in cholestasis. Blocking hepatic NFAT activation may reduce cholestatic liver injury in humans. LAY SUMMARY: Bile acid induces liver injury by stimulating the expression of inflammatory genes in hepatocytes through activation of the transcription factor NFAT. Blocking this activation in vitro (in hepatocyte cultures) and in vivo (in cholestatic mice) decreased the expression of inflammatory genes and reduced liver injury.


Asunto(s)
Colangitis Esclerosante/metabolismo , Citocinas/metabolismo , Cirrosis Hepática Biliar/metabolismo , Hígado/metabolismo , Factores de Transcripción NFATC/metabolismo , Transducción de Señal/efectos de los fármacos , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/farmacología , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hepatocitos/metabolismo , Humanos , Cirrosis Hepática Biliar/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Transcripción NFATC/antagonistas & inhibidores , Factores de Transcripción NFATC/genética , Pirazoles/farmacología , Pirazoles/uso terapéutico , Transducción de Señal/genética , Resultado del Tratamiento , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
6.
Hepatology ; 69(2): 831-844, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30120894

RESUMEN

Treatment of hematological malignancy with antibody-drug conjugates (ADCs) may cause liver injury. ADCs deliver a toxic moiety into antigen-expressing tumor cells, but may also injure hepatic sinusoids (sinusoidal obstruction syndrome; SOS). We studied patients who received an anti-CD22/calicheamicin conjugate (inotuzumab ozogamicin; InO) to gain insight into mechanisms of sinusoidal injury, given that there are no CD22+ cells in the normal liver, but nonspecific uptake of ADCs by liver sinusoidal endothelial cells (LSECs). Six hundred thirty-eight patients (307 with acute lymphocytic leukemia [ALL], 311 with non-Hodgkin's lymphoma [NHL]) were randomized to either InO or standard chemotherapy (controls). While blinded to treatment assignment, we reviewed all cases with hepatobiliary complications to adjudicate the causes. Frequency of SOS among patients who received InO was 5 of 328 (1.5%), compared to no cases among 310 control patients. Drug-induced liver injury (DILI) developed in 26 (7.9%) InO recipients and 3 (1%) controls. Intrahepatic cholestasis (IHC) was observed in 4.9% of InO recipients and in 5.5% of controls. Subsequent to the randomization study, 113 patients with ALL underwent allogeneic hematopoietic cell transplantation (HCT); frequency of SOS in those previously exposed to InO was 21 of 79 (27%) versus 3 of 34 (9%) in controls. An exploratory multivariate model identified a past history of liver disease and thrombocytopenia before conditioning therapy as dominant risk factors for SOS after transplant. Conclusion: Frequencies of SOS and DILI after inotuzumab ozogamicin treatment were 1.5% and 7.9%, respectively, compared to none and 1% among controls who received standard chemotherapy. These data suggest that ADCs that do not target antigens present in the normal liver have a relatively low frequency of SOS, but a relatively high frequency of DILI.


Asunto(s)
Antineoplásicos Inmunológicos/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Inotuzumab Ozogamicina/efectos adversos , Linfoma no Hodgkin/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Gastroenterólogos , Trasplante de Células Madre Hematopoyéticas , Enfermedad Veno-Oclusiva Hepática/etiología , Humanos
7.
Hepatology ; 70(3): 871-882, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30561836

RESUMEN

Primary sclerosing cholangitis (PSC) is a heterogeneous and progressive fibroinflammatory cholangiopathy with no known etiology or effective treatment. Studies of PSC are limited due to difficulty in accessing the cholangiocyte, the small percentage of these cells in the liver, instability of in vitro culture systems, and reliance on samples from end-stage disease. Here, we demonstrate that stem cells can be isolated from the bile of PSC patients undergoing endoscopic retrograde cholangiopancreatography earlier in their clinical course and maintained long term in vitro as three-dimensional (3D) organoids that express a biliary genetic phenotype. Additionally, bile-derived organoids (BDOs) can be biobanked and samples obtained longitudinally over the course of the disease. These BDOs express known cholangiocyte markers including gamma glutamyl transferase, cytokeratin 19, epithelial cellular adhesion molecule, cystic fibrosis transmembrane conductance regulator, and anion exchanger 2. RNA sequence analysis identified 39 genes whose expression differed in organoids from PSC patients compared to non-PSC controls, including human leukocyte antigen DM alpha chain and chemokine (C-C motif) ligand 20 (CCL20), immune-related genes previously described in genome-wide association studies of PSC. Incubation of these BDOs with interleukin 17A or tumor necrosis factor alpha led to an immune-reactive phenotype with a significant increase in secretion of proinflammatory mediators, including CCL20, a T-cell chemoattractant. Conclusion: This study demonstrates that bile can be used as a source of biliary-like cells that can be maintained long term in vitro as 3D organoids; these BDOs retain features of cholangiopathies, including the ability to react to inflammatory stimuli by secreting chemokines and propagating an immune-reactive phenotype reflective of the pathogenesis of these diseases; thus, BDOs represent a platform for the study of the pathogenesis and therapy of cholangiopathies, particularly PSC.


Asunto(s)
Colangitis Esclerosante/genética , Colangitis Esclerosante/patología , Regulación de la Expresión Génica , Organoides/metabolismo , Adulto , Bilis/metabolismo , Colangiopancreatografia Retrógrada Endoscópica/métodos , Citocinas/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Estudio de Asociación del Genoma Completo , Humanos , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Sistema de Registros , Sensibilidad y Especificidad , Transducción de Señal/genética , Células Madre/metabolismo , Técnicas de Cultivo de Tejidos
8.
Gastroenterology ; 155(5): 1578-1592.e16, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30063921

RESUMEN

BACKGROUND & AIMS: Bile acid transporters maintain bile acid homeostasis. Little is known about the functions of some transporters in cholestasis or their regulatory mechanism. We investigated the hepatic expression of solute carrier organic anion transporter family member 3A1 (SLCO3A1, also called OATP3A1) and assessed its functions during development of cholestasis. METHODS: We measured levels of OATP3A1 protein and messenger RNA and localized the protein in liver tissues from 22 patients with cholestasis and 21 patients without cholestasis, using real-time quantitative polymerase chain reaction, immunoblot, and immunofluorescence analyses. We performed experiments with Slco3a1-knockout and C57BL/6J (control) mice. Mice and Sprague-Dawley rats underwent bile duct ligation (BDL) or a sham operation. Some mice were placed on a 1% cholic acid (CA) diet to induce cholestasis or on a control diet. Serum and liver tissues were collected and analyzed; hepatic levels of bile acids and 7-α-C4 were measured using liquid chromatography/mass spectrometry. Human primary hepatocytes and hepatoma (PLC/PRF/5) cell lines were used to study mechanisms that regulate OATP3A1 expression and transport. RESULTS: Hepatic levels of OATP3A1 messenger RNA and protein were significantly increased in liver tissues from patients with cholestasis and from rodents with BDL or 1% CA diet-induced cholestasis. Levels of fibroblast growth factor 19 (FGF19, FGF15 in rodents) were also increased in liver tissues from patients and rodents with cholestasis. FGF19 signaling activated the Sp1 transcription factor and nuclear factor κB to increase expression of OATP3A1 in hepatocytes; we found binding sites for these factors in the SLCO3A1 promoter. Slco3a1-knockout mice had shorter survival times and increased hepatic levels of bile acid, and they developed more liver injury after the 1% CA diet or BDL than control mice. In hepatoma cell lines, we found OATP3A1 to take prostaglandin E2 and thyroxine into cells and efflux bile acids. CONCLUSIONS: We found levels of OATP3A1 to be increased in cholestatic liver tissues from patients and rodents compared with healthy liver tissues. We show that OATP3A1 functions as a bile acid efflux transporter that is up-regulated as an adaptive response to cholestasis.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Colestasis/metabolismo , Transportadores de Anión Orgánico/fisiología , Animales , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Factores de Crecimiento de Fibroblastos/análisis , Factores de Crecimiento de Fibroblastos/fisiología , Humanos , Hígado/química , Masculino , Ratones , Ratones Endogámicos C57BL , Transportadores de Anión Orgánico/análisis , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Factor de Transcripción Sp1/fisiología , Factor de Transcripción ReIA/fisiología
9.
Hepatology ; 75(2): 492-493, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34543482

Asunto(s)
Sistema Biliar
10.
Liver Int ; 38(6): 1128-1138, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29356312

RESUMEN

BACKGROUND & AIMS: Cholestatic liver injury is mediated by bile acid-induced inflammatory responses. We hypothesized that superior therapeutic effects might be achieved by combining treatments that reduce the bile acid pool size with one that blocks inflammation. METHODS: Bile duct-ligated (BDL) rats and Mdr2(Abcb4)-/- mice were treated with all-trans retinoic acid (atRA), a potent inhibitor of bile acid synthesis, 5 mg/kg/d by gavage, or Cenicriviroc (CVC), a known antagonist of CCR2 and CCR5, 50 mg/kg/d alone or in combination for 14 days and 1 month respectively. RESULTS: All-trans retinoic acid alone reduced bile acid pool size and liver necrosis in BDL rats. However, the combination with CVC further reduced liver to body weight ratio, bile acid pool size, plasma liver enzyme, bilirubin, liver necrosis and fibrosis when compared to the atRA treatment. The assessment of hepatic hydroxyproline content further confirmed the reduced liver injury concurrent with reduction of pro-inflammatory cytokines emphasizing the synergistic effects of these two agents. Profiling of hepatic inflammatory cells revealed that combination therapy reduced neutrophils and T cells but not macrophages. The superior therapeutic effects of combination treatment were also confirmed in Mdr2-/- mice where a significant reduction in plasma liver enzymes, bilirubin, liver fibrosis, bile duct proliferation and hepatic infiltration of neutrophils and T cells and expression of cytokines were found. CONCLUSIONS: Multitargeted therapy is an important paradigm for treating cholestatic liver injury. The combination of CVC with atRA or other FXR activators may warrant a clinical trial in patients with cholestatic liver disease.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Colestasis/tratamiento farmacológico , Imidazoles/farmacología , Hepatopatías/tratamiento farmacológico , Tretinoina/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Colestasis/complicaciones , Colestasis/patología , Modelos Animales de Enfermedad , Quimioterapia Combinada , Ligadura , Hígado/patología , Hepatopatías/etiología , Hepatopatías/patología , Masculino , Ratones , Ratones Noqueados , Ratas , Ratas Sprague-Dawley , Receptores de Citocinas/antagonistas & inhibidores , Sulfóxidos , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
11.
Am J Physiol Cell Physiol ; 312(1): C40-C46, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27834195

RESUMEN

The multidrug resistance-associated protein 2 (Mrp2) is an ATP-binding cassette transporter that transports a wide variety of organic anions across the apical membrane of epithelial cells. The expression of Mrp2 on the plasma membrane is regulated by protein-protein interactions. Cystic fibrosis transmembrane conductance regulator (CFTR)-associated ligand (CAL) interacts with transmembrane proteins via its PDZ domain and reduces their cell surface expression by increasing lysosomal degradation and intracellular retention. Our results showed that CAL is localized at the trans-Golgi network of rat hepatocytes. The expression of CAL is increased, and Mrp2 expression is decreased, in the liver of mice deficient in sodium/hydrogen exchanger regulatory factor-1. To determine whether CAL interacts with Mrp2 and is involved in the posttranscriptional regulation of Mrp2, we used glutathione S-transferase (GST) fusion proteins with or without the COOH-terminal PDZ binding motif of Mrp2 as the bait in GST pull-down assays. We demonstrated that Mrp2 binds to CAL via its COOH-terminal PDZ-binding motif in GST pull-down assays, an interaction verified by coimmunoprecipitation of these two proteins in cotransfected COS-7 cells. In COS-7 and LLC-PK1 cells transfected with Mrp2 alone, only a mature, high-molecular-mass band of Mrp2 was detected. However, when cells were cotransfected with Mrp2 and CAL, Mrp2 was expressed as both mature and immature forms. Biotinylation and streptavidin pull-down assays confirmed that CAL dramatically reduces the expression level of total and cell surface Mrp2 in Huh-7 cells. Our findings suggest that CAL interacts with Mrp2 and is a negative regulator of Mrp2 expression.


Asunto(s)
Proteínas Portadoras/metabolismo , Regulación hacia Abajo/fisiología , Hepatocitos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Transducción de Señal/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Regulación de la Expresión Génica/fisiología , Proteínas de la Matriz de Golgi , Humanos , Masculino , Proteínas de Transporte de Membrana , Ratones , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Ratas , Ratas Sprague-Dawley
12.
Am J Physiol Regul Integr Comp Physiol ; 312(4): R477-R484, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28077388

RESUMEN

The Na+-dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1) is a hepatocyte-specific solute carrier, which plays an important role in maintaining bile salt homeostasis in mammals. The absence of a hepatic Na+-dependent bile salt transport system in marine skate and rainbow trout raises a question regarding the function of the Slc10a1 gene in these species. Here, we have characterized the Slc10a1 gene in the marine skate, Leucoraja erinacea The transcript of skate Slc10a1 (skSlc10a1) encodes 319 amino acids and shares 46% identity to human NTCP (hNTCP) with similar topology to mammalian NTCP. SkSlc10a1 mRNA was mostly confined to the brain and testes with minimal expression in the liver. An FXR-bile salt reporter assay indicated that skSlc10a1 transported taurocholic acid (TCA) and scymnol sulfate, but not as effectively as hNTCP. An [3H]TCA uptake assay revealed that skSlc10a1 functioned as a Na+-dependent transporter, but with low affinity for TCA (Km = 92.4 µM) and scymnol sulfate (Ki = 31 µM), compared with hNTCP (TCA, Km = 5.4 µM; Scymnol sulfate, Ki = 3.5 µM). In contrast, the bile salt concentration in skate plasma was 2 µM, similar to levels seen in mammals. Interestingly, skSlc10a1 demonstrated transport activity for the neurosteroids dehydroepiandrosterone sulfate and estrone-3-sulfate at physiological concentration, similar to hNTCP. Together, our findings indicate that skSlc10a1 is not a physiological bile salt transporter, providing a molecular explanation for the absence of a hepatic Na+-dependent bile salt uptake system in skate. We speculate that Slc10a1 is a neurosteroid transporter in skate that gained its substrate specificity for bile salts later in vertebrate evolution.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/química , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Rajidae/metabolismo , Sodio/metabolismo , Simportadores/química , Simportadores/metabolismo , Ácido Taurocólico/metabolismo , Animales , Ácidos y Sales Biliares/química , Sitios de Unión , Humanos , Hígado/metabolismo , Especificidad de Órganos , Transportadores de Anión Orgánico Sodio-Dependiente/sangre , Unión Proteica , Homología de Secuencia , Rajidae/clasificación , Sodio/química , Especificidad de la Especie , Relación Estructura-Actividad , Simportadores/sangre , Ácido Taurocólico/química , Distribución Tisular
13.
Hepatology ; 64(6): 2151-2164, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27639250

RESUMEN

Sirtuin1 (Sirt1; mammalian homolog of Saccharomyces cerevisiae enzyme Sir2) is a transcriptional and transactivational regulator of murine farnesoid X receptor (Fxr), which is the primary bile acid (BA) sensor, and critical regulator of BA metabolism in physiological and pathophysiological conditions. Previous studies have suggested compromised Sirt1 expression in rodent models of cholestatic liver injury. We hypothesized that Sirt1 could be potentially targeted to alleviate cholestatic liver injury. In cultured primary human hepatocytes, SIRT1 messenger RNA was down-regulated after GCA treatment, potentially through induction of microRNA (miR)-34a, whereas tauroursodeoxycholic acid induced SIRT1 expression without affecting miR-34a expression. Sirt1 expression was also significantly down-regulated in three mouse models of liver injury (bile duct ligation, 1% cholic acid [CA] fed, and the Mdr2-/- mouse). Mice fed CA diet also demonstrated hepatic FXR hyperacetylation and induction of the Janus kinase/p53 pathway. Mice fed a CA diet and concurrently administered the Sirt1 activator, SRT1720 (50 mg/kg/day, orally), demonstrated 40% and 45% decrease in plasma alanine aminotransferase and BA levels, respectively. SRT1720 increased hepatic BA hydrophilicity by increasing tri- and tetrahydroxylated and decreasing the dihydroxylated BA fraction. SRT1720 administration also inhibited hepatic BA synthesis, potentially through ileal fibroblast growth factor 15- and Fxr-mediated inhibition of cytochrome p450 (Cyp) 7a1 and Cyp27a1, along with increased hepatic BA hydroxylation in association with Cyp2b10 induction. SRT1720 administration significantly induced renal multidrug resistance-associated protein 2 and 4, peroxisome proliferator-activated receptor gamma coactivator 1-α, and constitutive androstance receptor expression along with ∼2-fold increase in urinary BA concentrations. CONCLUSION: SRT1720 administration alleviates cholestatic liver injury in mice by increasing hydrophilicity of hepatic BA composition and decreasing plasma BA concentration through increased BA excretion into urine. Thus, use of small-molecule activators of Sirt1 presents a novel therapeutic target for cholestatic liver injury. (Hepatology 2016;64:2151-2164).


Asunto(s)
Colestasis/tratamiento farmacológico , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Hepatopatías/tratamiento farmacológico , Sirtuina 1/efectos de los fármacos , Sirtuina 1/fisiología , Animales , Colestasis/complicaciones , Ácido Cólico/administración & dosificación , Modelos Animales de Enfermedad , Hepatopatías/etiología , Masculino , Ratones , Ratones Endogámicos C57BL
14.
J Clin Gastroenterol ; 51(2): e11-e16, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27428727

RESUMEN

GOALS: To perform an exploratory pilot study of all-trans retinoic acid (ATRA) combined with ursodeoxycholic acid (UDCA) in patients with primary sclerosing cholangitis (PSC). BACKGROUND: PSC is a progressive disorder for which there is no accepted therapy. Studies in human hepatocyte cultures and in animal models of cholestasis indicate that ATRA might have beneficial effects in cholestatic disorders. STUDY: ATRA (45 mg/m/d, divided and given twice daily) was combined with moderate-dose UDCA in patients with PSC who had incomplete response to UDCA monotherapy. The combination was administered for 12 weeks, followed by a 12-week washout in which patients returned to UDCA monotherapy. We measured alkaline phosphatase (ALP), alanine aminotransferase (ALT), bilirubin, cholesterol, bile acids, and the bile acid intermediate 7α-hydroxy-4-cholesten-3-one (C4) at baseline, week 12, and after washout. RESULTS: Fifteen patients completed 12 weeks of therapy. The addition of ATRA to UDCA reduced the median serum ALP levels (277±211 to 243±225 U/L, P=0.09) although this, the primary endpoint, did not reach significance. In contrast, median serum ALT (76±55 to 46±32 U/L, P=0.001) and C4 (9.8±19 to 7.9±11 ng/mL, P=0.03) levels significantly decreased. After washout, ALP and C4 levels nonsignificantly increased, whereas ALT levels significantly increased (46±32 to 74±74, P=0.0006), returning to baseline. CONCLUSIONS: In this human pilot study, the combination of ATRA and UDCA did not achieve the primary endpoint (ALP); however, it significantly reduced ALT and the bile acid intermediate C4. ATRA appears to inhibit bile acid synthesis and reduce markers of inflammation, making it a potential candidate for further study in PSC (NCT 01456468).


Asunto(s)
Colagogos y Coleréticos/administración & dosificación , Colangitis Esclerosante/tratamiento farmacológico , Tretinoina/administración & dosificación , Ácido Ursodesoxicólico/administración & dosificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Alanina Transaminasa/sangre , Fosfatasa Alcalina/sangre , Ácidos y Sales Biliares/biosíntesis , Colangitis Esclerosante/sangre , Colangitis Esclerosante/fisiopatología , Colestenonas/sangre , Quimioterapia Combinada , Femenino , Humanos , Hígado/fisiopatología , Pruebas de Función Hepática , Masculino , Persona de Mediana Edad , Proyectos Piloto , Resultado del Tratamiento , Adulto Joven
15.
Dig Dis ; 35(3): 232-234, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28249287

RESUMEN

BACKGROUND: The mechanism by which bile acids induce liver injury in cholestasis remains controversial. Although high levels of bile acids are toxic when applied to liver cells, the level of toxic bile acids in the liver of most cholestatic animals and patients is <10 µM, indicating there must be alternative mechanisms. Recent studies suggest that the inflammatory response may play an important role in bile acid-induced liver injury, as pro-inflammatory cytokine expression is stimulated by bile acids in mouse hepatocyte cultures. To elucidate the mechanisms of bile acid-induced liver injury, we assessed signs of liver damage and gene expression in Abcb4-/- mice, a well-known model for cholestasis. Key Messages: Elevated plasma levels of bile acids were detected as early as 10 days after birth and at all later ages in Abcb4-/- mice compared to their wild-type littermate controls. Parallel increases in expression of Tnfα, Ccl2, Cxcl1, and Cxcl2 mRNA occurred at these early time points and throughout 12 weeks in Abcb4-/- livers. Marked hepatic neutrophil infiltration was first detected in 3-week mice, whereas histological evidence of liver injury was not detected until 6-weeks of age. Subsequent in vitro studies demonstrated that normal hepatocytes but not other non-parenchymal liver cells responded to bile acids with inflammatory cytokine induction. CONCLUSION: Bile acids induce the expression of pro-inflammatory cytokines in hepatocytes in Abcb4-/- mice that initiates an inflammatory response. This inflammatory response plays an important role in the development of cholestatic liver injury in this and other cholestatic conditions. Furthermore, understanding of these inflammatory mechanisms should lead to new therapeutic approaches for cholestatic liver diseases.


Asunto(s)
Ácidos y Sales Biliares/efectos adversos , Inflamación/patología , Hígado/patología , Envejecimiento/metabolismo , Alanina Transaminasa/sangre , Animales , Ácidos y Sales Biliares/sangre , Citocinas/metabolismo , Humanos , Hígado/metabolismo , Ratones , Neutrófilos/metabolismo
16.
Proc Natl Acad Sci U S A ; 111(13): 4934-9, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24639522

RESUMEN

The inherited deficiency of the lysosomal glucocerebrosidase (GBA) due to mutations in the GBA gene results in Gaucher disease (GD). A vast majority of patients present with nonneuronopathic, type 1 GD (GD1). GBA deficiency causes the accumulation of two key sphingolipids, glucosylceramide (GL-1) and glucosylsphingosine (LysoGL-1), classically noted within the lysosomes of mononuclear phagocytes. How metabolites of GL-1 or LysoGL-1 produced by extralysosomal glucocerebrosidase GBA2 contribute to the GD1 pathophysiology is not known. We recently recapitulated hepatosplenomegaly, cytopenia, hypercytokinemia, and the bone-formation defect of human GD1 through conditional deletion of Gba in Mx1-Cre(+):GD1 mice. Here we show that the deletion of Gba2 significantly rescues the GD1 clinical phenotype, despite enhanced elevations in GL-1 and LysoGL-1. Most notably, the reduced bone volume and bone formation rate are normalized. These results suggest that metabolism of GL-1 or LysoGL-1 into downstream bioactive lipids is a major contributor to the bone-formation defect. Direct testing revealed a strong inhibition of osteoblast viability by nanomolar concentrations of sphingosine, but not of ceramide. These findings are consistent with toxicity of high circulating sphingosine levels in GD1 patients, which decline upon enzyme-replacement therapy; serum ceramide levels remain unchanged. Together, complementary results from mice and humans affected with GD1 not only pinpoint sphingosine as being an osteoblast toxin, but also set forth Gba2 as a viable therapeutic target for the development of inhibitors to ameliorate certain disabling consequences of GD1.


Asunto(s)
Enfermedad de Gaucher/genética , Enfermedad de Gaucher/terapia , Eliminación de Gen , beta-Glucosidasa/genética , Animales , Línea Celular , Enfermedad de Gaucher/enzimología , Humanos , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Osteoblastos/patología , Fenotipo , Esfingolípidos/metabolismo , Esfingosina/metabolismo
17.
J Hepatol ; 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34332756
18.
Hepatology ; 62(2): 635-43, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25678132

RESUMEN

Cholestasis, including primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC), results from an impairment or disruption of bile production and causes intracellular retention of toxic bile constituents, including bile salts. If left untreated, cholestasis leads to liver fibrosis and cirrhosis, which eventually results in liver failure and the need for liver transplantation. Currently, the only therapeutic option available for these patients is ursodeoxycholic acid (UDCA), which slows the progression of PBC, particularly in stage I and II of the disease. However, some patients have an incomplete response to UDCA therapy, whereas other, more advanced cases often remain unresponsive. For PSC, UDCA therapy does not improve survival, and recommendations for its use remain controversial. These considerations emphasize the need for alternative therapies. Hepatic transporters, located along basolateral (sinusoidal) and apical (canalicular) membranes of hepatocytes, are integral determinants of bile formation and secretion. Nuclear receptors (NRs) are critically involved in the regulation of these hepatic transporters and are natural targets for therapy of cholestatic liver diseases. One of these NRs is peroxisome proliferator-activated receptor alpha (PPARα), which plays a central role in maintaining cholesterol, lipid, and bile acid homeostasis by regulating genes responsible for bile acid synthesis and transport in humans, including cytochrome P450 (CYP) isoform 7A1 (CYP7A1), CYP27A1, CYP8B1, uridine 5'-diphospho-glucuronosyltransferase 1A1, 1A3, 1A4, 1A6, hydroxysteroid sulfotransferase enzyme 2A1, multidrug resistance protein 3, and apical sodium-dependent bile salt transporter. Expression of many of these genes is altered in cholestatic liver diseases, but few have been extensively studied or had the mechanism of PPARα effect identified. In this review, we examine what is known about these mechanisms and consider the rationale for the use of PPARα ligand therapy, such as fenofibrate, in various cholestatic liver disorders.


Asunto(s)
Colestasis/tratamiento farmacológico , Ácidos Fíbricos/uso terapéutico , Cirrosis Hepática Biliar/tratamiento farmacológico , PPAR alfa/metabolismo , Ácido Ursodesoxicólico/uso terapéutico , Biomarcadores/metabolismo , Colestasis/fisiopatología , Femenino , Estudios de Seguimiento , Humanos , Cirrosis Hepática Biliar/fisiopatología , Masculino , Medición de Riesgo , Índice de Severidad de la Enfermedad , Resultado del Tratamiento
19.
Hepatology ; 62(4): 1227-36, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26108984

RESUMEN

UNLABELLED: The intercellular adhesion molecule 1 (ICAM-1) is induced in mouse liver after bile duct ligation (BDL) and plays a key role in neutrophil-mediated liver injury in BDL mice. ICAM-1 has been shown to interact with cytoskeletal ezrin-radixin-moesin (ERM) proteins that also interact with the PDZ protein, Na(+) /H(+) exchanger regulatory factor 1 (NHERF-1/EBP50). In NHERF-1(-/-) mice, ERM proteins are significantly reduced in brush-border membranes from kidney and small intestine. ERM knockdown reduces ICAM-1 expression in response to tumor necrosis factor alpha. Here we show that NHERF-1 assembles ERM proteins, ICAM-1 and F-actin into a macromolecule complex that is increased in mouse liver after BDL. Compared to wild-type (WT) mice, both sham-operated and BDL NHERF-1(-/-) mice have lower levels of activated ERM and ICAM-1 protein in the liver accompanied by significantly reduced hepatic neutrophil accumulation, serum alanine aminotransferase, and attenuated liver injury after BDL. However, total bile acid concentrations in serum and liver of sham and BDL NHERF-1(-/-) mice were not significantly different from WT controls, although hepatic tetrahydroxylated bile acids and Cyp3a11 messenger RNA levels were higher in NHERF-1(-/-) BDL mice. CONCLUSION: NHERF-1 participates in the inflammatory response that is associated with BDL-induced liver injury. Deletion of NHERF-1 in mice leads to disruption of the formation of ICAM-1/ERM/NHERF-1 complex and reduction of hepatic ERM proteins and ICAM-1, molecules that are up-regulated and are essential for neutrophil-mediated liver injury in cholestasis. Further study of the role of NHERF-1 in the inflammatory response in cholestasis and other forms of liver injury should lead to discovery of new therapeutic targets in hepatic inflammatory diseases.


Asunto(s)
Colestasis Intrahepática/etiología , Molécula 1 de Adhesión Intercelular/fisiología , Hepatopatías/etiología , Fosfoproteínas/fisiología , Intercambiadores de Sodio-Hidrógeno/fisiología , Animales , Hepatitis/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurofibromina 2/fisiología , Fosfoproteínas/genética , Intercambiadores de Sodio-Hidrógeno/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA