Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
Eat Weight Disord ; 26(5): 1399-1408, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32578125

RESUMEN

PURPOSE: Monogenic forms of obesity are caused by single-gene variants which affect the energy homeostasis by increasing food intake and decreasing energy expenditure. Most of these variants result from disruption of the leptin-melanocortin signaling, which can cause severe early-onset obesity and hyperphagia. These mutation have been identified in genes encoding essential proteins to this pathway, including leptin (LEP), melanocortin 2 receptor accessory proteins 2 (MRAP2) and proopiomelanocortin (POMC). We aimed to investigate the prevalence of LEP, MRAP2 and POMC rare variants in severely obese adults, who developed obesity during childhood. To the best of our knowledge, this is the first study screening rare variants of these genes in patients from Brazil. METHODS: A total of 122 Brazilian severely obese patients (BMI ≥ 35 kg/m2) were screened for the coding regions of LEP, MRAP2 and POMC by Sanger sequencing. All patients are candidates to the bariatric surgery. Clinical characteristics were described in patients with novel and/or potentially pathogenic variants. RESULTS: Sixteen different variants were identified in these genes, of which two were novel. Among them, one previous variant with potentially deleterious effect in MRAP2 (p.Arg125Cys) was found. In addition, two heterozygous mutations in POMC (p.Phe87Leu and p.Arg90Leu) were predicted to impair protein function. We also observed a POMC homozygous 9 bp insertion (p.Gly99_Ala100insSerSerGly) in three patients. No pathogenic variant was observed in LEP. CONCLUSION: Our study described for the first time the prevalence of rare potentially pathogenic MRAP2 and POMC variants in a cohort of Brazilian severely obese adults. LEVEL OF EVIDENCE: Level V, cross-sectional descriptive study.


Asunto(s)
Obesidad Mórbida , Proopiomelanocortina , Proteínas Adaptadoras Transductoras de Señales , Adulto , Brasil , Estudios Transversales , Humanos , Leptina , Obesidad Mórbida/genética , Proopiomelanocortina/genética , Proproteína Convertasas , Receptor de Melanocortina Tipo 4/genética
2.
PLoS Pathog ; 14(7): e1007151, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29979790

RESUMEN

Mycobacterium leprae, an obligate intracellular bacillus, infects Schwann cells (SCs), leading to peripheral nerve damage, the most severe leprosy symptom. In the present study, we revisited the involvement of phenolic glycolipid I (PGL I), an abundant, private, surface M. leprae molecule, in M. leprae-SC interaction by using a recombinant strain of M. bovis BCG engineered to express this glycolipid. We demonstrate that PGL I is essential for bacterial adhesion and SC internalization. We also show that live mycobacterium-producing PGL I induces the expression of the endocytic mannose receptor (MR/CD206) in infected cells in a peroxisome proliferator-activated receptor gamma (PPARγ)-dependent manner. Of note, blocking mannose recognition decreased bacterial entry and survival, pointing to a role for this alternative recognition pathway in bacterial pathogenesis in the nerve. Moreover, an active crosstalk between CD206 and the nuclear receptor PPARγ was detected that led to the induction of lipid droplets (LDs) formation and prostaglandin E2 (PGE2), previously described as fundamental players in bacterial pathogenesis. Finally, this pathway was shown to induce IL-8 secretion. Altogether, our study provides evidence that the entry of live M. leprae through PGL I recognition modulates the SC phenotype, favoring intracellular bacterial persistence with the concomitant secretion of inflammatory mediators that may ultimately be involved in neuroinflammation.


Asunto(s)
Antígenos Bacterianos/metabolismo , Glucolípidos/metabolismo , Lectinas Tipo C/metabolismo , Lepra/metabolismo , Lectinas de Unión a Manosa/metabolismo , PPAR gamma/metabolismo , Receptores de Superficie Celular/metabolismo , Células de Schwann/virología , Humanos , Receptor de Manosa , Mycobacterium leprae/metabolismo , Receptor Cross-Talk/fisiología
3.
Mediators Inflamm ; 2020: 1839762, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33110395

RESUMEN

Sepsis is characterized by a life-threatening organ dysfunction caused by an unbalanced host response to microbe infection that can lead to death. Besides being currently the leading cause of death in intensive care units worldwide, sepsis can also induce long-term consequences among survivors, such as cognitive impairment. Statins (lipid-lowering drugs widely used to treat dyslipidemia) have been shown to possess pleiotropic anti-inflammatory and antimicrobial effects. These drugs act inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, an enzyme that catalyzes the conversion of HMG-CoA to mevalonate, the limiting step in cholesterol biosynthesis. In this work, we evaluated the therapeutic effects of simvastatin in an animal model of sepsis. In previous study from our group, statin pretreatment avoided cognitive damage and neuroinflammation in sepsis survivors. Herein, we focused on acute inflammation where sepsis was induced by cecal ligation and puncture (CLP), and the animals were treated with simvastatin (2 mg/kg) 6 h after surgery. We measured plasma biochemical markers of organ dysfunction, cell migration, cell activation, bacterial elimination, production of nitric oxide 24 h after CLP, survival rate for 7 days, and cognitive impairment 15 days after CLP. One single administration of simvastatin 6 h after CLP was able to prevent both liver and kidney dysfunction. In addition, this drug decreased cell accumulation in the peritoneum as well as the levels of TNF-α, MIF, IL-6, and IL-1ß. Simvastatin diminished the number of bacterial colony forming units (CFU) and increased the production of nitric oxide production in the peritoneum. Simvastatin treatment increased survival for the first 24 h, but it did not alter survival rate at the end of 7 days. Our results showed that posttreatment with simvastatin hampered organ dysfunction, increased local production of nitric oxide, improved bacterial clearance, and modulated inflammation in a relevant model of sepsis.


Asunto(s)
Citocinas/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Simvastatina/uso terapéutico , Animales , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Ratones , Óxido Nítrico/metabolismo , Lavado Peritoneal , Células Madre
4.
Cytokine ; 112: 87-94, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30017389

RESUMEN

The disease leprosy is caused by Mycobacterium leprae. The disease displays a spectrum of clinical manifestations relating to the stage of the infection and the pathogen-specific immune response. The most frequent M. leprae-specific hypersensitivity reactions are erythema nodosum leprosum (ENL) and type-1 (reversal) reaction (T1R). Omega-3 and omega-6 fatty acid-derived lipid mediators are involved in the regulation of these M. leprae-specific inflammatory and immune responses. Studies on lipid mediators showed their presence during different manifestations of leprosy-before and after multidrug therapy (MDT) and during T1R. This review aims to compare the lipid mediators at different stages of the disease. This review also presents new data on the significance of lipid mediators (cysteinyl leukotrienes and leukotriene B4, prostaglandin E2 and D2, lipoxin A4 and resolvin D1) on ENL.


Asunto(s)
Ácidos Grasos Omega-3/sangre , Ácidos Grasos Omega-6/sangre , Lepra/sangre , Animales , Quimioterapia Combinada , Eritema Nudoso/sangre , Eritema Nudoso/tratamiento farmacológico , Humanos , Leprostáticos/farmacología , Lepra/tratamiento farmacológico , Mycobacterium leprae/efectos de los fármacos
5.
Parasitol Res ; 117(11): 3585-3590, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30145706

RESUMEN

Antimalarial interventions mostly rely upon drugs, as chloroquine. However, plasmodial strains resistant to many drugs are constantly reported, leading to an expansion of malaria cases. Novel approaches are required to circumvent the drug resistance issue. Here, we describe the antimalarial potential of the chloroquine analogue 2-[[2-[(7-chloro-4-quinolinyl)amino]ethyl]amino] ethanol (PQUI08001/06). We observed that PQUI08001/06 treatment reduces parasitemia of both chloroquine-resistant and -sensitive strains of Plasmodium falciparum in vitro and P. berghei in vivo. Our data suggests that PQUI08001/06 is a potential antimalarial therapeutic alternative approach that could also target chloroquine-resistant plasmodial strains.


Asunto(s)
Antimaláricos/uso terapéutico , Cloroquina/análogos & derivados , Cloroquina/uso terapéutico , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Animales , Resistencia a Medicamentos/efectos de los fármacos , Humanos , Malaria/tratamiento farmacológico , Masculino , Ratones , Parasitemia/tratamiento farmacológico
6.
J Infect Dis ; 210(4): 656-66, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24634497

RESUMEN

Neutrophils are rapidly recruited to the site of Leishmania infection and play an active role in capturing and killing parasites. They are the main source of leukotriene B4 (LTB4), a potent proinflammatory lipid mediator. However, the role of LTB4 in neutrophil infection by Leishmania amazonensis is not clear. In this study, we show that L. amazonensis or its lipophosphoglycan can induce neutrophil activation, degranulation, and LTB4 production. Using pharmacological inhibitors of leukotriene synthesis, our findings reveal an LTB4-driven autocrine/paracrine regulatory effect. In particular, neutrophil-derived LTB4 controls L. amazonensis killing, degranulation, and reactive oxygen species production. In addition, L. amazonensis infection induces an early increase in Toll-like receptor 2 expression, which facilitates parasite internalization. Nuclear factor kappa B (NFkB) pathway activation represents a required upstream event for L. amazonensis-induced LTB4 synthesis. These leishmanicidal mechanisms mediated by neutrophil-derived LTB4 act through activation of its receptor, B leukotriene receptor 1 (BLT1).


Asunto(s)
Leishmania mexicana/metabolismo , Leishmaniasis Cutánea/metabolismo , Leucotrieno B4/metabolismo , Neutrófilos/metabolismo , Antígenos de Superficie/metabolismo , Humanos , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Leucotrieno B4/metabolismo , Receptor Toll-Like 2/metabolismo
7.
Respir Res ; 15: 93, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25265888

RESUMEN

BACKGROUND: Leptospiral glycolipoprotein (GLP) is a potent and specific Na/K-ATPase inhibitor. Severe pulmonary form of leptospirosis is characterized by edema, inflammation and intra-alveolar hemorrhage having a dismal prognosis. Resolution of edema and inflammation determines the outcome of lung injury. Na/K-ATPase activity is responsible for edema clearance. This enzyme works as a cell receptor that triggers activation of mitogen-activated protein kinase (MAPK) intracellular signaling pathway. Therefore, injection of GLP into lungs induces injury by triggering inflammation. METHODS: We injected GLP and ouabain, into mice lungs and compared their effects. Bronchoalveolar lavage fluid (BALF) was collected for cell and lipid body counting and measurement of protein and lipid mediators (PGE2 and LTB4). The levels of the IL-6, TNFα, IL-1B and MIP-1α were also quantified. Lung images illustrate the injury and whole-body plethysmography was performed to assay lung function. We used Toll-like receptor 4 (TLR4) knockout mice to evaluate leptospiral GLP-induced lung injury. Na/K-ATPase activity was determined in lung cells by nonradioactive rubidium incorporation. We analyzed MAPK p38 activation in lung and in epithelial and endothelial cells. RESULTS: Leptospiral GLP and ouabain induced lung edema, cell migration and activation, production of lipid mediators and cytokines and hemorrhage. They induced lung function alterations and inhibited rubidium incorporation. Using TLR4 knockout mice, we showed that the GLP action was not dependent on TLR4 activation. GLP activated of p38 and enhanced cytokine production in cell cultures which was reversed by a selective p38 inhibitor. CONCLUSIONS: GLP and ouabain induced lung injury, as evidenced by increased lung inflammation and hemorrhage. To our knowledge, this is the first report showing GLP induces lung injury. GLP and ouabain are Na/K-ATPase targets, triggering intracellular signaling pathways. We showed p38 activation by GLP-induced lung injury, which was may be linked to Na/K-ATPase inhibition. Lung inflammation induced by GLP was not dependent on TLR4 activation.


Asunto(s)
Leptospira interrogans , Lipopolisacáridos/toxicidad , Lipoproteínas/toxicidad , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/enzimología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Inhibidores Enzimáticos/toxicidad , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Lesión Pulmonar/patología , Masculino , Ratones , Ratones Endogámicos C57BL , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
8.
Mem Inst Oswaldo Cruz ; 109(6): 767-74, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25317704

RESUMEN

Lipid bodies [lipid droplets (LBs)] are lipid-rich organelles involved in lipid metabolism, signalling and inflammation. Recent findings suggest a role for LBs in host response to infection; however, the potential functions of this organelle in Toxoplasma gondii infection and how it alters macrophage microbicidal capacity during infection are not well understood. Here, we investigated the role of host LBs in T. gondii infection in mouse peritoneal macrophages in vitro. Macrophages cultured with mouse serum (MS) had higher numbers of LBs than those cultured in foetal bovine serum and can function as a model to study the role of LBs during intracellular pathogen infection. LBs were found in association with the parasitophorous vacuole, suggesting that T. gondii may benefit from this lipid source. Moreover, increased numbers of macrophage LBs correlated with high prostaglandin E2 (PGE2) production and decreased nitric oxide (NO) synthesis. Accordingly, LB-enriched macrophages cultured with MS were less efficient at controlling T. gondii growth. Treatment of macrophages cultured with MS with indomethacin, an inhibitor of PGE2 production, increased the microbicidal capacity against T. gondii. Collectively, these results suggest that culture with MS caused a decrease in microbicidal activity of macrophages against T. gondii by increasing PGE2 while lowering NO production.


Asunto(s)
Gotas Lipídicas/parasitología , Activación de Macrófagos/fisiología , Macrófagos Peritoneales/parasitología , Toxoplasma/fisiología , Vacuolas/parasitología , Animales , Bovinos , Interacciones Huésped-Parásitos , Indometacina/farmacología , Gotas Lipídicas/fisiología , Macrófagos Peritoneales/química , Macrófagos Peritoneales/fisiología , Macrófagos Peritoneales/ultraestructura , Masculino , Ratones , Ratones Endogámicos C3H , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Óxido Nítrico/biosíntesis , Cultivo Primario de Células , Prostaglandinas E/antagonistas & inhibidores , Prostaglandinas E/biosíntesis , Vacuolas/fisiología
9.
Front Genet ; 15: 1363417, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841722

RESUMEN

Introduction: Obesity is a multifactorial disease associated with the development of many comorbidities. This disease is associated with several metabolic alterations; however, it has been shown that some individuals with obesity do not exhibit metabolic syndrome. Adipose tissue neutralizes the detrimental effects of circulating fatty acids, ectopic deposition, and inflammation, among others, through its esterification into neutral lipids that are stored in the adipocyte. However, when the adipocyte is overloaded, i.e., its expansion capacity is exceeded, this protection is lost, resulting in fatty acid toxicity with ectopic fat accumulation in peripheral tissues and inflammation. In this line, this study aimed to investigate whether polymorphisms in genes that control adipose tissue fat storage capacity are potential biomarkers for severe obesity susceptibility and also metabolic complications. Methods: This study enrolled 305 individuals with severe obesity (cases, BMI≥35 kg/m2) and 196 individuals with normal weight (controls, 18.5≤BMI≤24.9 kg/m2). Demographic, anthropometric, biochemical, and blood pressure variables were collected from the participants. Plasma levels of leptin, resistin, MCP1, and PAI1 were measured by Bio-Plex 200 Multiplexing Analyzer System. Genomic DNA was extracted and variants in DBC1 (rs17060940), SIRT1 (rs7895833 and rs1467568), UCP2 (rs660339), PPARG (rs1801282) and ADRB2 (rs1042713 and rs1042714) genes were genotyped by PCR allelic discrimination using TaqMan® assays. Results: Our findings indicated that SIRT1 rs7895833 polymorphism was a risk factor for severe obesity development in the overdominant model. SIRT1 rs1467568 and UCP2 rs660339 were associated with anthropometric traits. SIRT1 rs1467568 G allele was related to lower medians of body adipose index and hip circumference, while the UCP2 rs660339 AA genotype was associate with increased body mass index. Additionally, DBC1 rs17060940 influenced glycated hemoglobin. Regarding metabolic alterations, 27% of individuals with obesity presented balanced metabolic status in our cohort. Furthermore, SIRT1 rs1467568 AG genotype increased 2.5 times the risk of developing metabolic alterations. No statistically significant results were observed with Peroxisome Proliferator-Activated Receptor Gama and ADRB2 polymorphisms. Discussion/Conclusion: This study revealed that SIRT1 rs7895833 and rs1467568 are potential biomarkers for severe obesity susceptibility and the development of unbalanced metabolic status in obesity, respectively. UCP2 rs660339 and DBC1 rs17060940 also showed a significant role in obesity related-traits.

10.
Mol Neurobiol ; 60(2): 481-494, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36280654

RESUMEN

Acute cerebral dysfunction is a pathological state common in severe infections and a pivotal determinant of long-term cognitive outcomes. Current evidence indicates that a loss of synaptic contacts orchestrated by microglial activation is central in sepsis-associated encephalopathy. However, the upstream signals that lead to microglial activation and the mechanism involved in microglial-mediated synapse dysfunction in sepsis are poorly understood. This study investigated the involvement of the NLRP3 inflammasome in microglial activation and synaptic loss related to sepsis. We demonstrated that septic insult using the cecal ligation and puncture (CLP) model induced the expression of NLRP3 inflammasome components in the brain, such as NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3), apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC), caspase-1, and IL-1ß. Immunostaining techniques revealed increased expression of the NLRP3 inflammasome in microglial cells in the hippocampus of septic mice. Meanwhile, an in vitro model of primary microglia stimulated with LPS exhibited an increase in mitochondrial reactive oxygen species (ROS) production, NLRP3 complex recruitment, and IL-1ß release. Pharmacological inhibition of NLRP3, caspase-1, and mitochondrial ROS all decreased IL-1ß secretion by microglial cells. Furthermore, we found that microglial NLRP3 activation is the main pathway for IL-1ß-enriched microvesicle (MV) release, which is caspase-1-dependent. MV released from LPS-activated microglia induced neurite suppression and excitatory synaptic loss in neuronal cultures. Moreover, microglial caspase-1 inhibition prevented neurite damage and attenuated synaptic deficits induced by the activated microglial MV. These results suggest that microglial NLRP3 inflammasome activation is the mechanism of IL-1ß-enriched MV release and potentially synaptic impairment in sepsis.


Asunto(s)
Encefalopatía Asociada a la Sepsis , Sepsis , Animales , Ratones , Caspasa 1/metabolismo , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Ratones Endogámicos NOD , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Encefalopatía Asociada a la Sepsis/metabolismo
11.
Mediators Inflamm ; 2012: 601032, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22529526

RESUMEN

Although exerting valuable functions in living organisms, nonesterified fatty acids (NEFAs) can be toxic to cells. Increased blood concentration of oleic acid (OLA) and other fatty acids is detected in many pathological conditions. In sepsis and leptospirosis, high plasma levels of NEFA and low albumin concentrations are correlated to the disease severity. Surprisingly, 24 h after intravenous or intragastric administration of OLA, main NEFA levels (OLA inclusive) were dose dependently decreased. However, lung injury was detected in intravenously treated mice, and highest dose killed all mice. When administered by the enteral route, OLA was not toxic in any tested conditions. Results indicate that OLA has important regulatory properties on fatty acid metabolism, possibly lowering circulating fatty acid through activation of peroxisome proliferator-activated receptors. The significant reduction in blood NEFA levels detected after OLA enteral administration can contribute to the already known health benefits brought about by unsaturated-fatty-acid-enriched diets.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Ácidos Grasos no Esterificados/administración & dosificación , Ácidos Grasos no Esterificados/metabolismo , Ácido Oléico/administración & dosificación , Albúminas/metabolismo , Animales , Líquido del Lavado Bronquioalveolar , Dinoprostona/metabolismo , Relación Dosis-Respuesta a Droga , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Mucosa Gástrica/metabolismo , Infusiones Intravenosas , Leucotrieno B4/metabolismo , Lípidos/química , Masculino , Ratones , Ácido Oléico/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo
12.
Mediators Inflamm ; 2012: 956509, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209347

RESUMEN

Oleic acid (OA) can induce acute lung injury in experimental models. In the present work, we used intratracheal OA injection to show augmented oedema formation, cell migration and activation, lipid mediator, and cytokine productions in the bronchoalveolar fluids of Swiss Webster mice. We also demonstrated that OA-induced pulmonary injury is dependent on ERK1/2 activation, since U0126, an inhibitor of ERK1/2 phosphorylation, blocked neutrophil migration, oedema, and lipid body formation as well as IL-6, but not IL-1ß production. Using a mice strain carrying a null mutation for the TLR4 receptor, we proved that increased inflammatory parameters after OA challenges were not due to the activation of the TLR4 receptor. With OA being a Na/K-ATPase inhibitor, we suggest the possible involvement of this enzyme as an OA target triggering lung inflammation.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Lesión Pulmonar/inducido químicamente , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ácido Oléico/toxicidad , Animales , Citocinas/fisiología , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Infiltración Neutrófila/efectos de los fármacos , Fosforilación , Edema Pulmonar/etiología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Receptor Toll-Like 4/fisiología
13.
Sci Rep ; 12(1): 6569, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35449171

RESUMEN

HIV controllers (HICs) are models of HIV functional cure, although some studies have shown persistent inflammation and increased rates of atherosclerosis in HICs. Since immune activation/inflammation contributes to the pathogenesis of cardiovascular diseases (CVD), we evaluated clinical data and inflammation markers in HIV-1 viremic controllers (VC), elite controllers (EC), and control groups (HIV positive individuals with virological suppression by antiretroviral therapy-cART; HIV negative individuals-HIVneg) to assess whether they presented elevated levels of inflammation markers also associated with CVD. We observed the highest frequencies of activated CD8+ T cells in VCs, while EC and cART groups presented similar but slightly altered frequencies of this marker when compared to the HIVneg group. Regarding platelet activation, both HICs groups presented higher expression of P-selectin in platelets when compared to control groups. Monocyte subset analyses revealed lower frequencies of classical monocytes and increased frequencies of non-classical and intermediate monocytes among cART individuals and in EC when compared to HIV negative individuals, but none of the differences were significant. For VC, however, significant decreases in frequencies of classical monocytes and increases in the frequency of intermediate monocytes were observed in comparison to HIV negative individuals. The frequency of monocytes expressing tissue factor was similar among the groups on all subsets. In terms of plasma markers, VC had higher levels of many inflammatory markers, while EC had higher levels of VCAM-1 and ICAM-1 compared to control groups. Our data showed that VCs display increased levels of inflammation markers that have been associated with CVD risk. Meanwhile, ECs show signals of lower but persistent inflammation, comparable to the cART group, indicating the potential benefits of alternative therapies to decrease inflammation in this group.


Asunto(s)
Enfermedades Cardiovasculares , Infecciones por VIH , VIH-1 , Biomarcadores , Linfocitos T CD8-positivos , Controladores de Élite , VIH-1/fisiología , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Inflamación , Factores de Riesgo , Carga Viral
14.
Sci Rep ; 12(1): 7850, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35552484

RESUMEN

Leprosy household contacts are generally more prone to develop the disease compared to the general population. Previous studies have demonstrated that genes related to the alternative activation (M2) profile in macrophages are associated with the increased bacillary load in multibacillary leprosy patients (MB), and that contacts of MB patients have a higher risk of contracting the disease. In addition, positive serological responses to PGL-1 or LID-1 are associated with a higher risk of disease. We performed a 5-year follow-up of contacts of leprosy patients and evaluated the pattern of gene and protein expression in cells from contacts that developed leprosy during this period. Leprosy household contacts had decreased soluble CD163 and heme oxygenase 1 (HO-1) serum levels when compared with healthy donors and leprosy patients. In contrast, arginase 1 activities were higher in contacts when compared with both healthy donors and leprosy patients. Of the contacts, 33 developed leprosy during the follow-up. Gene expression analysis revealed reduced ARG1 expression in these contacts when compared with contacts that did not develop disease. Arginase activity was a good predictive marker of protection in contacts (sensitivity: 90.0%, specificity: 96.77%) and the association with serology for anti-PGL-1 and anti-LID-1 increased the sensitivity to 100%. Altogether, the data presented here demonstrate a positive role of arginase against leprosy and suggest that the evaluation of arginase activity should be incorporated into leprosy control programs in order to aid in the decision of which contacts should receive chemoprophylaxis.


Asunto(s)
Lepra , Mycobacterium leprae , Anticuerpos Antibacterianos , Antígenos Bacterianos , Arginasa/genética , Biomarcadores , Ensayo de Inmunoadsorción Enzimática , Glucolípidos , Humanos
15.
J Immunol ; 182(7): 4025-35, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19299700

RESUMEN

Histoplasma capsulatum (Hc) is a facultative, intracellular parasite of worldwide significance. Infection with Hc produces a broad spectrum of diseases and may progress to a life-threatening systemic disease, particularly in individuals with HIV infection. Resolution of histoplasmosis is associated with the activation of cell-mediated immunity, and leukotriene B(4) plays an important role in this event. Lipid bodies (LBs) are increasingly being recognized as multifunctional organelles with roles in inflammation and infection. In this study, we investigated LB formation in histoplasmosis and its putative function in innate immunity. LB formation in leukocytes harvested from Hc-infected C57BL/6 mice peaks on day 2 postinfection and correlates with enhanced generation of lipid mediators, including leukotriene B(4) and PGE(2). Pretreatment of leukocytes with platelet-activating factor and BLT1 receptor antagonists showed that both lipid mediators are involved in cell signaling for LB formation. Alveolar leukocytes cultured with live or dead Hc also presented an increase in LB numbers. The yeast alkali-insoluble fraction 1, which contains mainly beta-glucan isolated from the Hc cell wall, induced a dose- and time-dependent increase in LB numbers, indicating that beta-glucan plays a signaling role in LB formation. In agreement with this hypothesis, beta-glucan-elicited LB formation was inhibited in leukocytes from 5-LO(-/-), CD18(low) and TLR2(-/-) mice, as well as in leukocytes pretreated with anti-Dectin-1 Ab. Interestingly, human monocytes from HIV-1-infected patients failed to produce LBs after beta-glucan stimulation. These results demonstrate that Hc induces LB formation, an event correlated with eicosanoid production, and suggest a role for these lipid-enriched organelles in host defense during fungal infection.


Asunto(s)
Antígenos CD18/metabolismo , Infecciones por VIH/inmunología , Histoplasmosis/inmunología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Orgánulos/inmunología , Receptor Toll-Like 2/metabolismo , beta-Glucanos/inmunología , Adulto , Animales , Antígenos CD18/inmunología , Pared Celular/química , Pared Celular/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , VIH-1 , Histoplasma/inmunología , Humanos , Lectinas Tipo C , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Leucotrieno B4/biosíntesis , Leucotrieno B4/inmunología , Lípidos , Masculino , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Proteínas del Tejido Nervioso/inmunología , Orgánulos/metabolismo , Receptor Toll-Like 2/inmunología
16.
Front Endocrinol (Lausanne) ; 12: 722441, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504472

RESUMEN

Obesity is a pandemic condition of complex etiology, resulting from the increasing exposition to obesogenic environmental factors combined with genetic susceptibility. In the past two decades, advances in genetic research identified variants of the leptin-melanocortin pathway coding for genes, which are related to the potentiation of satiety and hunger, immune system, and fertility. Here, we review cases of congenital leptin deficiency and the possible beneficial effects of leptin replacement therapy. In summary, the cases presented here show clinical phenotypes of disrupted bodily energy homeostasis, biochemical and hormonal disorders, and abnormal immune response. Some phenotypes can be partially reversed by exogenous administration of leptin. With this review, we aim to contribute to the understanding of leptin gene mutations as targets for obesity diagnostics and treatment strategies.


Asunto(s)
Leptina/uso terapéutico , Obesidad/tratamiento farmacológico , Obesidad/genética , Metabolismo Energético/genética , Terapia de Reemplazo de Hormonas , Humanos , Leptina/deficiencia , Leptina/genética , Mutación , Obesidad/congénito , Fenotipo
17.
Sci Rep ; 11(1): 15149, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34312428

RESUMEN

Sepsis results from a dyshomeostatic response to infection, which may lead to hyper or hypoimmune states. Monocytes are central regulators of the inflammatory response, but our understanding of their role in the genesis and resolution of sepsis is still limited. Here, we report a comprehensive exploration of monocyte molecular responses in a cohort of patients with septic shock via proteomic profiling. The acute stage of septic shock was associated with an impaired inflammatory phenotype, indicated by the down-regulation of MHC class II molecules and proinflammatory cytokine pathways. Simultaneously, there was an up-regulation of glycolysis enzymes and a decrease in proteins related to the citric acid cycle and oxidative phosphorylation. On the other hand, the restoration of immunocompetence was the hallmark of recovering patients, in which an upregulation of interferon signaling pathways was a notable feature. Our results provide insights into the immunopathology of sepsis and propose that, pending future studies, immunometabolism pathway components could serve as therapeutic targets in septic patients.


Asunto(s)
Monocitos/inmunología , Monocitos/metabolismo , Choque Séptico/sangre , Choque Séptico/inmunología , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Estudios de Cohortes , Citocinas/sangre , Metabolismo Energético , Femenino , Antígenos de Histocompatibilidad Clase II/sangre , Humanos , Inmunidad , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Proteómica
18.
Diabetes Metab Syndr Obes ; 14: 11-22, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33442278

RESUMEN

BACKGROUND: Brain-derived neurotrophic factor (BDNF) is a pro-survival factor in the brain that also regulates energy balance. BDNF loss-of-function point mutations are responsible for haploinsufficiency, causing severe early-onset obesity. Up to date, only a few studies have sequenced this gene to search for rare mutations related to obesity. In this study, we aimed to investigate the prevalence of BDNF variants in a cohort of adults with severe obesity from Brazil. MATERIAL AND METHODS: This study comprised 201 adults with severe obesity (BMI ≥ 35.0 kg/m2) with onset during childhood- or adolescence/youth. As controls, 73 subjects with normal weight (18.5 ≤ BMI ≤ 24.9 kg/m2) were selected. The exclusion criteria were pregnancy, lactation, the use of medication to lose or gain weight, and the presence of symptoms suggestive of syndromic obesity (only for the case group). The coding region of the BDNF gene was screened by Sanger sequencing. Demographic, anthropometric, and blood pressure parameters were obtained from the participants as well as serum hormone and cytokines concentrations and biochemical values. RESULTS: As a result, three missense variants [p.(Thr2Ile), p.(Val66Met), and p.(Arg209Gln)] and four synonymous variants (p.Leu107=, p.Thr149=, p.Ala150=, and p.Ser213=) were identified. The p.(Arg209Gln) was predicted as pathogenic by all in silico algorithms used and was not observed in the control group. The individuals carrying the p.(Val66Met) mutated allele had higher waist circumference, HDL-cholesterol and MCP1 levels, and reduced risk of developing metabolic syndrome. CONCLUSION: We observed that the common BDNF p.(Val66Met) variant has influenced waist circumference, HDL-cholesterol, and MCP1 levels. This polymorphism has also a protective effect on metabolic syndrome susceptibility. Additionally, we described for the first time a rare potentially pathogenic BDNF variant in a Brazilian patient with severe obesity and childhood-onset.

19.
Int J Exp Pathol ; 91(5): 451-9, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20586817

RESUMEN

Tegumentary leishmaniasis is an important public health problem in several countries. The capacity of the Leishmania species, at the initial moments of the infection, to invade and survive inside the host cells involves the interaction of surface molecules that are crucial in determining the evolution of the disease. Using C57BL/6 wild-type and TLR-2(-/-) mice infected with L. (L.) amazonensis, we demonstrated that TLR-2(-/-) mice presented eosinophilic granuloma in the ear dermis, different from C57BL/6 wild-type mice that presented a cellular profile characterized mainly by mononuclear cell infiltrates, besides neutrophils and eosinophils, during the two first week of infection. When the parasite load was evaluated, we found that the absence of TLR-2 lead to a significant reduction of the infection in deficient mice, when compared with C57BL/6 mice which were more susceptible to the infection. Using TLR-2 deficient mice, it was possible to show that the absence of this receptor determined the reduction of the parasite load and the recruitment of inflammatory cells during the two first weeks after L. (L.) amazonensis infection.


Asunto(s)
Dermis , Leishmania/inmunología , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/patología , Receptor Toll-Like 2/genética , Animales , Dermis/inmunología , Dermis/parasitología , Dermis/patología , Progresión de la Enfermedad , Femenino , Leishmania/crecimiento & desarrollo , Leishmania/ultraestructura , Macrófagos/parasitología , Macrófagos/patología , Macrófagos/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Microscopía Electrónica , Neutrófilos/parasitología , Neutrófilos/patología , Neutrófilos/ultraestructura , Receptor Toll-Like 2/deficiencia , Receptor Toll-Like 2/inmunología
20.
Sci Rep ; 10(1): 10976, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620771

RESUMEN

Cr-LAAO, an L-amino acid oxidase isolated from Calloselasma rhodosthoma snake venom, has been demonstrated as a potent stimulus for neutrophil activation and inflammatory mediator production. However, the mechanisms involved in Cr-LAAO induced neutrophil activation has not been well characterized. Here we investigated the mechanisms involved in Cr-LAAO-induced lipid body (also known as lipid droplet) biogenesis and eicosanoid formation in human neutrophils. Using microarray analysis, we show for the first time that Cr-LAAO plays a role in the up-regulation of the expression of genes involved in lipid signalling and metabolism. Those include different members of phospholipase A2, mostly cytosolic phospholipase A2-α (cPLA2-α); and enzymes involved in prostaglandin synthesis including cyclooxygenases 2 (COX-2), and prostaglandin E synthase (PTGES). In addition, genes involved in lipid droplet formation, including perilipin 2 and 3 (PLIN 2 and 3) and diacylglycerol acyltransferase 1 (DGAT1), were also upregulated. Furthermore, increased phosphorylation of cPLA2-α, lipid droplet biogenesis and PGE2 synthesis were observed in human neutrophils stimulated with Cr-LAAO. Treatment with cPLA2-α inhibitor (CAY10650) or DGAT-1 inhibitor (A922500) suppressed lipid droplets formation and PGE2 secretion. In conclusion, we demonstrate for the first time the effects of Cr-LAAO to regulate neutrophil lipid metabolism and signalling.


Asunto(s)
Venenos de Crotálidos/enzimología , Dinoprostona/metabolismo , Fosfolipasas A2 Grupo IV/metabolismo , L-Aminoácido Oxidasa/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Adolescente , Adulto , Animales , Venenos de Crotálidos/farmacología , Crotalinae/metabolismo , Citosol/metabolismo , Humanos , Técnicas In Vitro , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Modelos Biológicos , Activación Neutrófila/efectos de los fármacos , Activación Neutrófila/genética , Activación Neutrófila/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Regulación hacia Arriba/efectos de los fármacos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA